Cargando…
Estimation of Impact Parameter and Transverse Spherocity in heavy-ion collisions at the LHC energies using Machine Learning
Recently, machine learning (ML) techniques have led to a range of numerous developments in the field of nuclear and high-energy physics. In heavy-ion collisions, the impact parameter of a collision is one of the crucial observables that has a significant impact on the final state particle production...
Autores principales: | Mallick, Neelkamal, Tripathy, Sushanta, Mishra, Aditya Nath, Deb, Suman, Sahoo, Raghunath |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.103.094031 http://cds.cern.ch/record/2756388 |
Ejemplares similares
-
Implementation of machine learning techniques to predict impact parameter and transverse spherocity in heavy-ion collisions at the LHC
por: Mishra, Aditya Nath, et al.
Publicado: (2021) -
Transverse spherocity dependence of azimuthal anisotropy in heavy-ion collisions at the LHC using a multi-phase transport model
por: Mallick, Neelkamal, et al.
Publicado: (2021) -
Investigating radial-flow-like effects via pseudorapidity and transverse spherocity dependence of particle production in pp collisions at the LHC
por: R, Aswathy Menon K., et al.
Publicado: (2023) -
Estimation of impact parameter and transverse spherocity in heavy-ion collisions at the LHC using machine learning techniques
por: Mallick, Neelkamal, et al.
Publicado: (2022) -
Event topology and constituent-quark scaling of elliptic flow in heavy-ion collisions at the Large Hadron Collider using a multiphase transport model
por: Mallick, Neelkamal, et al.
Publicado: (2021)