Cargando…
Discrete optimization with interval data: minmax regret and fuzzy approach
Practitioners of operations research are often faced with incomplete or uncertain data. Focusing on basic and traditional problems, this book considers solving combinatorial optimization problems with imprecise data modeled by intervals and fuzzy intervals.
Autor principal: | Kasperski, Adam |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2008
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2758097 |
Ejemplares similares
-
Heuristic algorithms for the minmax regret flow-shop problem with interval processing times
por: Ćwik, Michał, et al.
Publicado: (2017) -
The global Minmax k-means algorithm
por: Wang, Xiaoyan, et al.
Publicado: (2016) -
How interval and fuzzy techniques can improve teaching: processing educational data from traditional statistical techniques to an appropriate combination of probabilistic, interval, and fuzzy approaches
por: Kosheleva, Olga, et al.
Publicado: (2017) -
Discrete fuzzy measures: computational aspects
por: Beliakov, Gleb, et al.
Publicado: (2019) -
Fuzzy solution concepts for non-cooperative games: interval, fuzzy and intuitionistic fuzzy payoffs
por: Verma, TIna, et al.
Publicado: (2019)