Cargando…
Deep Learning strategies for ProtoDUNE raw data denoising
In this work, we investigate different machine learning-based strategies for denoising raw simulation data from the ProtoDUNE experiment. The ProtoDUNE detector is hosted by CERN and it aims to test and calibrate the technologies for DUNE, a forthcoming experiment in neutrino physics. The reconstruc...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s41781-021-00077-9 http://cds.cern.ch/record/2758227 |
_version_ | 1780970111508676608 |
---|---|
author | Rossi, Marco Vallecorsa, Sofia |
author_facet | Rossi, Marco Vallecorsa, Sofia |
author_sort | Rossi, Marco |
collection | CERN |
description | In this work, we investigate different machine learning-based strategies for denoising raw simulation data from the ProtoDUNE experiment. The ProtoDUNE detector is hosted by CERN and it aims to test and calibrate the technologies for DUNE, a forthcoming experiment in neutrino physics. The reconstruction workchain consists of converting digital detector signals into physical high-level quantities. We address the first step in reconstruction, namely raw data denoising, leveraging deep learning algorithms. We design two architectures based on graph neural networks, aiming to enhance the receptive field of basic convolutional neural networks. We benchmark this approach against traditional algorithms implemented by the DUNE collaboration. We test the capabilities of graph neural network hardware accelerator setups to speed up training and inference processes. |
id | cern-2758227 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-27582272023-09-27T08:05:07Zdoi:10.1007/s41781-021-00077-9http://cds.cern.ch/record/2758227engRossi, MarcoVallecorsa, SofiaDeep Learning strategies for ProtoDUNE raw data denoisingstat.MLMathematical Physics and Mathematicsphysics.comp-phOther Fields of Physicshep-exParticle Physics - Experimentcs.LGComputing and Computershep-phParticle Physics - PhenomenologyIn this work, we investigate different machine learning-based strategies for denoising raw simulation data from the ProtoDUNE experiment. The ProtoDUNE detector is hosted by CERN and it aims to test and calibrate the technologies for DUNE, a forthcoming experiment in neutrino physics. The reconstruction workchain consists of converting digital detector signals into physical high-level quantities. We address the first step in reconstruction, namely raw data denoising, leveraging deep learning algorithms. We design two architectures based on graph neural networks, aiming to enhance the receptive field of basic convolutional neural networks. We benchmark this approach against traditional algorithms implemented by the DUNE collaboration. We test the capabilities of graph neural network hardware accelerator setups to speed up training and inference processes.In this work, we investigate different machine learning-based strategies for denoising raw simulation data from the ProtoDUNE experiment. The ProtoDUNE detector is hosted by CERN and it aims to test and calibrate the technologies for DUNE, a forthcoming experiment in neutrino physics. The reconstruction workchain consists of converting digital detector signals into physical high-level quantities. We address the first step in reconstruction, namely raw data denoising, leveraging deep learning algorithms. We design two architectures based on graph neural networks, aiming to enhance the receptive field of basic convolutional neural networks. We benchmark this approach against traditional algorithms implemented by the DUNE collaboration. We test the capabilities of graph neural network hardware accelerator setups to speed up training and inference processes.arXiv:2103.01596oai:cds.cern.ch:27582272021-03-02 |
spellingShingle | stat.ML Mathematical Physics and Mathematics physics.comp-ph Other Fields of Physics hep-ex Particle Physics - Experiment cs.LG Computing and Computers hep-ph Particle Physics - Phenomenology Rossi, Marco Vallecorsa, Sofia Deep Learning strategies for ProtoDUNE raw data denoising |
title | Deep Learning strategies for ProtoDUNE raw data denoising |
title_full | Deep Learning strategies for ProtoDUNE raw data denoising |
title_fullStr | Deep Learning strategies for ProtoDUNE raw data denoising |
title_full_unstemmed | Deep Learning strategies for ProtoDUNE raw data denoising |
title_short | Deep Learning strategies for ProtoDUNE raw data denoising |
title_sort | deep learning strategies for protodune raw data denoising |
topic | stat.ML Mathematical Physics and Mathematics physics.comp-ph Other Fields of Physics hep-ex Particle Physics - Experiment cs.LG Computing and Computers hep-ph Particle Physics - Phenomenology |
url | https://dx.doi.org/10.1007/s41781-021-00077-9 http://cds.cern.ch/record/2758227 |
work_keys_str_mv | AT rossimarco deeplearningstrategiesforprotodunerawdatadenoising AT vallecorsasofia deeplearningstrategiesforprotodunerawdatadenoising |