Cargando…
Deep Learning strategies for ProtoDUNE raw data denoising
In this work, we investigate different machine learning-based strategies for denoising raw simulation data from the ProtoDUNE experiment. The ProtoDUNE detector is hosted by CERN and it aims to test and calibrate the technologies for DUNE, a forthcoming experiment in neutrino physics. The reconstruc...
Autores principales: | Rossi, Marco, Vallecorsa, Sofia |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s41781-021-00077-9 http://cds.cern.ch/record/2758227 |
Ejemplares similares
-
Deep Learning strategies for ProtoDUNE raw data denoising
por: Rossi, Marco, et al.
Publicado: (2021) -
Product Jacobi-Theta Boltzmann machines with score matching
por: Pasquale, Andrea, et al.
Publicado: (2023) -
End-to-end Sinkhorn Autoencoder with Noise Generator
por: Deja, Kamil, et al.
Publicado: (2020) -
Searching for boosted dark matter at ProtoDUNE
por: Chatterjee, Animesh, et al.
Publicado: (2018) -
Machine Learning in High Energy Physics Community White Paper
por: Albertsson, Kim, et al.
Publicado: (2018)