Cargando…
Graph Neural Network Architectures for Fast Simulation and Muon Momentum Inference at the CMS Detector
We explore the potential of graph neural networks in various applications in high energy physics including fast simulation of boosted jets and muon momentum estimation in the CMS detector. Accurate and fast simulation of particle physics processes is crucial for the high-energy physics community. Si...
Autor principal: | Hariri, Ali |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2758631 |
Ejemplares similares
-
The calibration of muon momentum scale in the CMS detector
por: Castello, Roberto
Publicado: (2009) -
Deep Learning fast inference on FPGA for CMS Muon Level-1 Trigger studies
por: Diotalevi, Tommaso, et al.
Publicado: (2021) -
Fast Simulation of the CMS Detector
por: Orbaker, Douglas
Publicado: (2009) -
Measurement and simulation of the background in the CMS muon detectors
por: Calabria, Cesare
Publicado: (2018) -
Measurement and simulation of the background at the CMS muon detectors
por: Kang, Yechan
Publicado: (2018)