Cargando…
Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case
Deep learning is finding its way into high energy physics by replacing traditional Monte Carlo simulations. However, deep learning still requires an excessive amount of computational resources. A promising approach to make deep learning more efficient is to quantize the parameters of the neural netw...
Autores principales: | Rehm, Florian, Vallecorsa, Sofia, Saletore, Vikram, Pabst, Hans, Chaibi, Adel, Codreanu, Valeriu, Borras, Kerstin, Krücker, Dirk |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.5220/0010245002510258 http://cds.cern.ch/record/2758899 |
Ejemplares similares
-
Benchmark of Generative Adversarial Networks for Fast HEP Calorimeter Simulations
por: Rehm, Florian, et al.
Publicado: (2021) -
Validation of Deep Convolutional Generative Adversarial Networks for High Energy Physics Calorimeter Simulations
por: Rehm, Florian, et al.
Publicado: (2021) -
Physics Validation of Novel Convolutional 2D Architectures for Speeding Up High Energy Physics Simulations
por: Rehm, Florian, et al.
Publicado: (2021) -
Quantum Machine Learning for HEP Detector Simulations
por: Rehm, Florian, et al.
Publicado: (2021) -
Precise Image Generation on Current Noisy Quantum Computing Devices
por: Rehm, Florian, et al.
Publicado: (2023)