Cargando…
Generative Models for Fast Calorimeter Simulation: the LHCb case
Simulation is one of the key components in high energy physics. Historically it relies on the Monte Carlo methods which require a tremendous amount of computation resources. These methods may have difficulties with the expected High Luminosity Large Hadron Collider (HL-LHC) needs, so the experiments...
Autores principales: | Chekalina, Viktoria, Orlova, Elena, Ratnikov, Fedor, Ulyanov, Dmitry, Ustyuzhanin, Andrey, Zakharov, Egor |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/201921402034 http://cds.cern.ch/record/2759239 |
Ejemplares similares
-
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Variational Dropout Sparsification for Particle Identification speed-up
por: Ryzhikov, Artem, et al.
Publicado: (2020) -
Hyperparameter optimization, quantum-assisted model performance prediction, and benchmarking of AI-based High Energy Physics workloads using HPC
por: Wulff, Eric, et al.
Publicado: (2023) -
Hyperparameter optimization of data-driven AI models on HPC systems
por: Wulff, Eric, et al.
Publicado: (2023)