Cargando…
Heavy quark spin symmetric molecular states from ${\bar D}^{(*)}\Sigma_c^{(*)}$ and other coupled channels in the light of the recent LHCb pentaquarks
We consider the ${\bar D}^{(*)}\Sigma_c^{(*)}$ states, together with $J/\psi N$ and other coupled channels, and take an interaction consistent with heavy quark spin symmetry, with the dynamical input obtained from an extension of the local hidden gauge approach. By fitting only one parameter to the...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.100.014021 http://cds.cern.ch/record/2759244 |
_version_ | 1780970210463842304 |
---|---|
author | Xiao, C.W. Nieves, J. Oset, E. |
author_facet | Xiao, C.W. Nieves, J. Oset, E. |
author_sort | Xiao, C.W. |
collection | CERN |
description | We consider the ${\bar D}^{(*)}\Sigma_c^{(*)}$ states, together with $J/\psi N$ and other coupled channels, and take an interaction consistent with heavy quark spin symmetry, with the dynamical input obtained from an extension of the local hidden gauge approach. By fitting only one parameter to the recent three pentaquark states reported by the LHCb collaboration, we can reproduce the three of them in base to the mass and the width, providing for them the quantum numbers and approximate molecular structure as $1/2^-$ $\bar{D} \Sigma_c$, $1/2^-$ $\bar{D}^* \Sigma_c$, and $3/2^-$ $\bar{D}^* \Sigma_c$, and isospin $I=1/2$. We find another state around 4374 MeV, of $3/2^-$ $\bar{D} \Sigma_c^*$ structure, for which indications appear in the experimental spectrum. Two other near degenerate states of $1/2^-$ $\bar{D}^* \Sigma_c^*$ and $3/2^-$ $\bar{D}^* \Sigma_c^*$ nature are also found around 4520 MeV, which although less clear, are not incompatible with the observed spectrum. In addition, a $5/2^-$ $\bar D^* \Sigma_c^*$ state at the same energy appears, which however does not couple to $J/\psi p$ in $S-$wave, and hence it is not expected to show up in the LHCb experiment. |
id | cern-2759244 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2019 |
record_format | invenio |
spelling | cern-27592442021-05-04T07:48:10Zdoi:10.1103/PhysRevD.100.014021http://cds.cern.ch/record/2759244engXiao, C.W.Nieves, J.Oset, E.Heavy quark spin symmetric molecular states from ${\bar D}^{(*)}\Sigma_c^{(*)}$ and other coupled channels in the light of the recent LHCb pentaquarkshep-exParticle Physics - Experimenthep-phParticle Physics - PhenomenologyWe consider the ${\bar D}^{(*)}\Sigma_c^{(*)}$ states, together with $J/\psi N$ and other coupled channels, and take an interaction consistent with heavy quark spin symmetry, with the dynamical input obtained from an extension of the local hidden gauge approach. By fitting only one parameter to the recent three pentaquark states reported by the LHCb collaboration, we can reproduce the three of them in base to the mass and the width, providing for them the quantum numbers and approximate molecular structure as $1/2^-$ $\bar{D} \Sigma_c$, $1/2^-$ $\bar{D}^* \Sigma_c$, and $3/2^-$ $\bar{D}^* \Sigma_c$, and isospin $I=1/2$. We find another state around 4374 MeV, of $3/2^-$ $\bar{D} \Sigma_c^*$ structure, for which indications appear in the experimental spectrum. Two other near degenerate states of $1/2^-$ $\bar{D}^* \Sigma_c^*$ and $3/2^-$ $\bar{D}^* \Sigma_c^*$ nature are also found around 4520 MeV, which although less clear, are not incompatible with the observed spectrum. In addition, a $5/2^-$ $\bar D^* \Sigma_c^*$ state at the same energy appears, which however does not couple to $J/\psi p$ in $S-$wave, and hence it is not expected to show up in the LHCb experiment.We consider the D¯(*)Σc(*) states, together with J/ψN and other coupled channels, and take an interaction consistent with heavy quark spin symmetry, with the dynamical input obtained from an extension of the local hidden gauge approach. By fitting only one parameter to the recent three pentaquark states reported by the LHCb Collaboration, we can reproduce the three of them in base to the mass and the width, providing for them the quantum numbers and approximate molecular structure as 1/2- D¯Σc, 1/2- D¯*Σc, and 3/2- D¯*Σc, and the isospin I=1/2. We find another state around 4374 MeV, of the 3/2- D¯Σc* structure, for which indications appear in the experimental spectrum. Two other near degenerate states of a 1/2- D¯*Σc* and 3/2- D¯*Σc* nature are also found around 4520 MeV, which although less clear, are not incompatible with the observed spectrum. In addition, a 5/2- D¯*Σc* state at the same energy appears, which however does not couple to J/ψp in an S wave, and hence, it is not expected to show up in the LHCb experiment.arXiv:1904.01296oai:cds.cern.ch:27592442019-04-02 |
spellingShingle | hep-ex Particle Physics - Experiment hep-ph Particle Physics - Phenomenology Xiao, C.W. Nieves, J. Oset, E. Heavy quark spin symmetric molecular states from ${\bar D}^{(*)}\Sigma_c^{(*)}$ and other coupled channels in the light of the recent LHCb pentaquarks |
title | Heavy quark spin symmetric molecular states from ${\bar D}^{(*)}\Sigma_c^{(*)}$ and other coupled channels in the light of the recent LHCb pentaquarks |
title_full | Heavy quark spin symmetric molecular states from ${\bar D}^{(*)}\Sigma_c^{(*)}$ and other coupled channels in the light of the recent LHCb pentaquarks |
title_fullStr | Heavy quark spin symmetric molecular states from ${\bar D}^{(*)}\Sigma_c^{(*)}$ and other coupled channels in the light of the recent LHCb pentaquarks |
title_full_unstemmed | Heavy quark spin symmetric molecular states from ${\bar D}^{(*)}\Sigma_c^{(*)}$ and other coupled channels in the light of the recent LHCb pentaquarks |
title_short | Heavy quark spin symmetric molecular states from ${\bar D}^{(*)}\Sigma_c^{(*)}$ and other coupled channels in the light of the recent LHCb pentaquarks |
title_sort | heavy quark spin symmetric molecular states from ${\bar d}^{(*)}\sigma_c^{(*)}$ and other coupled channels in the light of the recent lhcb pentaquarks |
topic | hep-ex Particle Physics - Experiment hep-ph Particle Physics - Phenomenology |
url | https://dx.doi.org/10.1103/PhysRevD.100.014021 http://cds.cern.ch/record/2759244 |
work_keys_str_mv | AT xiaocw heavyquarkspinsymmetricmolecularstatesfrombardsigmacandothercoupledchannelsinthelightoftherecentlhcbpentaquarks AT nievesj heavyquarkspinsymmetricmolecularstatesfrombardsigmacandothercoupledchannelsinthelightoftherecentlhcbpentaquarks AT osete heavyquarkspinsymmetricmolecularstatesfrombardsigmacandothercoupledchannelsinthelightoftherecentlhcbpentaquarks |