Cargando…
Validation of Deep Convolutional Generative Adversarial Networks for High Energy Physics Calorimeter Simulations
In particle physics the simulation of particle transport through detectors requires an enormous amount of computational resources, utilizing more than 50% of the resources of the CERN Worldwide Large Hadron Collider Grid. This challenge has motivated the investigation of different, faster approaches...
Autores principales: | Rehm, Florian, Vallecorsa, Sofia, Borras, Kerstin, Krücker, Dirk |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2759294 |
Ejemplares similares
-
Benchmark of Generative Adversarial Networks for Fast HEP Calorimeter Simulations
por: Rehm, Florian, et al.
Publicado: (2021) -
Physics Validation of Novel Convolutional 2D Architectures for Speeding Up High Energy Physics Simulations
por: Rehm, Florian, et al.
Publicado: (2021) -
Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial Network Use Case
por: Rehm, Florian, et al.
Publicado: (2021) -
Fast Simulation of a High Granularity Calorimeter by Generative Adversarial Networks
por: Khattak, Gul Rukh, et al.
Publicado: (2021) -
Impact of quantum noise on the training of quantum Generative Adversarial Networks
por: Borras, Kerstin, et al.
Publicado: (2023)