Cargando…
Vacuum-UV photodesorption from compact Amorphous Solid Water : photon energy, isotopic and temperature effects
Vacuum-UV (VUV) photodesorption from water-rich ice mantles coating interstellar grains is known to play an important role in the gas-to-ice ratio in star- and planet-forming regions. Quantitative photodesorption yields from water ice are crucial for astrochemical models. We aim to provide the first...
Autores principales: | , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1021/acsearthspacechem.1c00302 http://cds.cern.ch/record/2759589 |
_version_ | 1780970233489522688 |
---|---|
author | Fillion, J.-H Dupuy, R. Féraud, G. Romanzin, C. Philippe, L. Putaud, T. Baglin, V. Cimino, R. Marie-Jeanne, P. Jeseck, P. Michaut, X. Bertin, M. |
author_facet | Fillion, J.-H Dupuy, R. Féraud, G. Romanzin, C. Philippe, L. Putaud, T. Baglin, V. Cimino, R. Marie-Jeanne, P. Jeseck, P. Michaut, X. Bertin, M. |
author_sort | Fillion, J.-H |
collection | CERN |
description | Vacuum-UV (VUV) photodesorption from water-rich ice mantles coating interstellar grains is known to play an important role in the gas-to-ice ratio in star- and planet-forming regions. Quantitative photodesorption yields from water ice are crucial for astrochemical models. We aim to provide the first quantitative photon-energy dependent photodesorption yields from water ice in the VUV. This information is important to understand the photodesorption mechanisms and to account for the variation of the yields under interstellar irradiation conditions. Experiments have been performed on the DESIRS beamline at the SOLEIL synchrotron, delivering tunable VUV light, using the SPICES (Surface Processes and ICES) set-up. Compact amorphous solid water ice (H$_2$O and D$_2$O) has been irradiated from 7 to 13.5 eV. Quantitative yields have been obtained by detection in the gas phase with mass-spectrometry for sample temperatures ranging from 15 K to 100 K. Photodesorption spectra of H$_2$O (D$_2$O), OH (OD), H$_2$ (D$_2$) and O$_2$ peak around 9-10 eV and decrease at higher energies. Average photodesorption yields of intact water at 15 K are 5 $\times$ 10$^{-4}$ molecule/photon for H$_2$O and 5 $\times$ 10$^{-5}$ molecule/photon for D$_2$O over the 7-13.5 eV range. The strong isotopic effect can be explained by a differential chemical recombination between OH (OD) and H (D) photofragments originating from lower kinetic energy available for the OH photofragments upon direct water photodissociation and/or possibly by an electronic relaxation process. It is expected to contribute to water fractionation during the building-up of the ice grain mantles in molecular clouds and to favor OH-poor chemical environment in comet-formation regions of protoplanetary disks. The yields of all the detected species except OH (OD) are enhanced above (70 $\pm$10) K, suggesting an ice restructuration at this temperature. |
id | cern-2759589 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-27595892023-03-03T09:38:40Zdoi:10.1021/acsearthspacechem.1c00302http://cds.cern.ch/record/2759589engFillion, J.-HDupuy, R.Féraud, G.Romanzin, C.Philippe, L.Putaud, T.Baglin, V.Cimino, R.Marie-Jeanne, P.Jeseck, P.Michaut, X.Bertin, M.Vacuum-UV photodesorption from compact Amorphous Solid Water : photon energy, isotopic and temperature effectsastro-ph.GAAstrophysics and Astronomyastro-ph.EPAstrophysics and Astronomyphysics.chem-phChemical Physics and ChemistryVacuum-UV (VUV) photodesorption from water-rich ice mantles coating interstellar grains is known to play an important role in the gas-to-ice ratio in star- and planet-forming regions. Quantitative photodesorption yields from water ice are crucial for astrochemical models. We aim to provide the first quantitative photon-energy dependent photodesorption yields from water ice in the VUV. This information is important to understand the photodesorption mechanisms and to account for the variation of the yields under interstellar irradiation conditions. Experiments have been performed on the DESIRS beamline at the SOLEIL synchrotron, delivering tunable VUV light, using the SPICES (Surface Processes and ICES) set-up. Compact amorphous solid water ice (H$_2$O and D$_2$O) has been irradiated from 7 to 13.5 eV. Quantitative yields have been obtained by detection in the gas phase with mass-spectrometry for sample temperatures ranging from 15 K to 100 K. Photodesorption spectra of H$_2$O (D$_2$O), OH (OD), H$_2$ (D$_2$) and O$_2$ peak around 9-10 eV and decrease at higher energies. Average photodesorption yields of intact water at 15 K are 5 $\times$ 10$^{-4}$ molecule/photon for H$_2$O and 5 $\times$ 10$^{-5}$ molecule/photon for D$_2$O over the 7-13.5 eV range. The strong isotopic effect can be explained by a differential chemical recombination between OH (OD) and H (D) photofragments originating from lower kinetic energy available for the OH photofragments upon direct water photodissociation and/or possibly by an electronic relaxation process. It is expected to contribute to water fractionation during the building-up of the ice grain mantles in molecular clouds and to favor OH-poor chemical environment in comet-formation regions of protoplanetary disks. The yields of all the detected species except OH (OD) are enhanced above (70 $\pm$10) K, suggesting an ice restructuration at this temperature.arXiv:2103.15435oai:cds.cern.ch:27595892021-03-29 |
spellingShingle | astro-ph.GA Astrophysics and Astronomy astro-ph.EP Astrophysics and Astronomy physics.chem-ph Chemical Physics and Chemistry Fillion, J.-H Dupuy, R. Féraud, G. Romanzin, C. Philippe, L. Putaud, T. Baglin, V. Cimino, R. Marie-Jeanne, P. Jeseck, P. Michaut, X. Bertin, M. Vacuum-UV photodesorption from compact Amorphous Solid Water : photon energy, isotopic and temperature effects |
title | Vacuum-UV photodesorption from compact Amorphous Solid Water : photon energy, isotopic and temperature effects |
title_full | Vacuum-UV photodesorption from compact Amorphous Solid Water : photon energy, isotopic and temperature effects |
title_fullStr | Vacuum-UV photodesorption from compact Amorphous Solid Water : photon energy, isotopic and temperature effects |
title_full_unstemmed | Vacuum-UV photodesorption from compact Amorphous Solid Water : photon energy, isotopic and temperature effects |
title_short | Vacuum-UV photodesorption from compact Amorphous Solid Water : photon energy, isotopic and temperature effects |
title_sort | vacuum-uv photodesorption from compact amorphous solid water : photon energy, isotopic and temperature effects |
topic | astro-ph.GA Astrophysics and Astronomy astro-ph.EP Astrophysics and Astronomy physics.chem-ph Chemical Physics and Chemistry |
url | https://dx.doi.org/10.1021/acsearthspacechem.1c00302 http://cds.cern.ch/record/2759589 |
work_keys_str_mv | AT fillionjh vacuumuvphotodesorptionfromcompactamorphoussolidwaterphotonenergyisotopicandtemperatureeffects AT dupuyr vacuumuvphotodesorptionfromcompactamorphoussolidwaterphotonenergyisotopicandtemperatureeffects AT feraudg vacuumuvphotodesorptionfromcompactamorphoussolidwaterphotonenergyisotopicandtemperatureeffects AT romanzinc vacuumuvphotodesorptionfromcompactamorphoussolidwaterphotonenergyisotopicandtemperatureeffects AT philippel vacuumuvphotodesorptionfromcompactamorphoussolidwaterphotonenergyisotopicandtemperatureeffects AT putaudt vacuumuvphotodesorptionfromcompactamorphoussolidwaterphotonenergyisotopicandtemperatureeffects AT baglinv vacuumuvphotodesorptionfromcompactamorphoussolidwaterphotonenergyisotopicandtemperatureeffects AT ciminor vacuumuvphotodesorptionfromcompactamorphoussolidwaterphotonenergyisotopicandtemperatureeffects AT mariejeannep vacuumuvphotodesorptionfromcompactamorphoussolidwaterphotonenergyisotopicandtemperatureeffects AT jeseckp vacuumuvphotodesorptionfromcompactamorphoussolidwaterphotonenergyisotopicandtemperatureeffects AT michautx vacuumuvphotodesorptionfromcompactamorphoussolidwaterphotonenergyisotopicandtemperatureeffects AT bertinm vacuumuvphotodesorptionfromcompactamorphoussolidwaterphotonenergyisotopicandtemperatureeffects |