Cargando…
Dual-Parameterized Quantum Circuit GAN Model in High Energy Physics
Generative models, and Generative Adversarial Networks (GAN) in particular, are being studied as possible alternatives to Monte Carlo simulations. It has been proposed that, in certain circumstances, simulation using GANs can be sped-up by using quantum GANs (qGANs).We present a new design of qGAN,...
Autores principales: | Chang, Su Yeon, Herbert, Steven, Vallecorsa, Sofia, Combarro, Elías F., Duncan, Ross |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202125103050 http://cds.cern.ch/record/2760154 |
Ejemplares similares
-
Running the Dual-PQC GAN on noisy simulators and real quantum hardware
por: Chang, Su Yeon, et al.
Publicado: (2023) -
Quantum Generative Adversarial Networks in a Continuous-Variable Architecture to Simulate High Energy Physics Detectors
por: Chang, Su Yeon, et al.
Publicado: (2021) -
The Quantum Path Kernel: A Generalized Neural Tangent Kernel for Deep Quantum Machine Learning
por: Incudini, Massimiliano, et al.
Publicado: (2023) -
Hybrid Quantum Classical Graph Neural Networks for Particle Track Reconstruction
por: Tüysüz, Cenk, et al.
Publicado: (2021) -
Mixed Quantum–Classical Method for Fraud Detection With Quantum Feature Selection
por: Grossi, Michele, et al.
Publicado: (2022)