Cargando…
Generalized low rank models
Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. Generalized Low Rank Models extends the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types.
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
Now Publishers
2016
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2761916 |
Sumario: | Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. Generalized Low Rank Models extends the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types. |
---|