Cargando…
Generalized low rank models
Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. Generalized Low Rank Models extends the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types.
Autores principales: | Udell, Madeleine, Horn, Corinne, Zadeh, Reza, Boyd, Stephen |
---|---|
Lenguaje: | eng |
Publicado: |
Now Publishers
2016
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2761916 |
Ejemplares similares
-
Low-rank models in visual analysis: theories, algorithms, and applications
por: Lin, Zhouchen, et al.
Publicado: (2017) -
Generalized unitarity and low-energy theorems
por: Horn, D, et al.
Publicado: (1968) -
Robust Generalized Low Rank Approximations of Matrices
por: Shi, Jiarong, et al.
Publicado: (2015) -
Theory of rank links
por: Verulava, Otar
Publicado: (2010) -
Assessment of Options Investments by Ranking Analysis
por: Izraylevich, Sergey
Publicado: (2010)