Cargando…
Learning with submodular functions: a convex optimization perspective
Learning with Submodular Functions presents the theory of submodular functions in a self-contained way from a convex analysis perspective, presenting tight links between certain polyhedra, combinatorial optimization and convex optimization problems.
Autor principal: | Bach, Francis |
---|---|
Lenguaje: | eng |
Publicado: |
Now Publishers
2013
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2762143 |
Ejemplares similares
-
Submodular functions and optimization
por: Fujishige, Satoru
Publicado: (2005) -
Submodular functions and optimization
por: Fujishige, Satoru
Publicado: (1991) -
Deep Compressed Sensing for Learning Submodular Functions
por: Tsai, Yu-Chung, et al.
Publicado: (2020) -
Ranking with submodular functions on a budget
por: Zhang, Guangyi, et al.
Publicado: (2022) -
Choosing panels of genomics assays using submodular optimization
por: Wei, Kai, et al.
Publicado: (2016)