Cargando…
Patterns of scalable Bayesian inference
Patterns of Scalable Bayesian Inference seeks to identify unifying principles, patterns, and intuitions for scaling Bayesian inference. It reviews existing work on utilizing modern computing resources with both MCMC and variational approximation techniques and comments on the path forward.
Autores principales: | Angelino, Elaine, Johnson, Matthew James, Adams, Ryan P |
---|---|
Lenguaje: | eng |
Publicado: |
Now Publishers
2016
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2762168 |
Ejemplares similares
-
Scalable Bayesian Inference for Coupled Hidden Markov and Semi-Markov Models
por: Touloupou, Panayiota, et al.
Publicado: (2019) -
Scalable Bayesian phylogenetics
por: Fisher, Alexander A., et al.
Publicado: (2022) -
Highly scalable maximum likelihood and conjugate Bayesian inference for ERGMs on graph sets with equivalent vertices
por: Yin, Fan, et al.
Publicado: (2022) -
26th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering
por: Mohammad-Djafari, Ali
Publicado: (2006) -
27th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering
por: Collective
Publicado: (2007)