Cargando…
Trends in cleaning relational data: consistency and deduplication
This book discusses the main facets and directions in designing error detection and repairing techniques. It proposes a taxonomy of current anomaly detection techniques, including error types, the automation of the detection process, and error propagation.
Autores principales: | Ilyas, Ihab F, Chu, Xu |
---|---|
Lenguaje: | eng |
Publicado: |
Now Publishers
2015
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2762207 |
Ejemplares similares
-
Data deduplication for data optimization for storage and network systems
por: Kim, Daehee, et al.
Publicado: (2016) -
Static Memory Deduplication for Performance Optimization in Cloud Computing
por: Jia, Gangyong, et al.
Publicado: (2017) -
Rule-based deduplication of article records from bibliographic databases
por: Jiang, Yu, et al.
Publicado: (2014) -
UMIc: A Preprocessing Method for UMI Deduplication and Reads Correction
por: Tsagiopoulou, Maria, et al.
Publicado: (2021) -
Secure and scalable deduplication of horizontally partitioned health data for privacy-preserving distributed statistical computation
por: Yigzaw, Kassaye Yitbarek, et al.
Publicado: (2017)