Cargando…

A tutorial on linear function approximators for dynamic programming and reinforcement learning

This tutorial reviews techniques for planning and learning in Markov Decision Processes (MDPs) with linear function approximation of the value function. Two major paradigms for finding optimal policies were considered: dynamic programming (DP) techniques for planning and reinforcement learning (RL).

Detalles Bibliográficos
Autores principales: Geramifard, Alborz, Walsh, Thomas J, Stefanie, Tellex, Chowdhary, Girish, Roy, Nicholas, How, Jonathan P
Lenguaje:eng
Publicado: Now Publishers 2013
Materias:
XX
Acceso en línea:http://cds.cern.ch/record/2762208
_version_ 1780970663600717824
author Geramifard, Alborz
Walsh, Thomas J
Stefanie, Tellex
Chowdhary, Girish
Roy, Nicholas
How, Jonathan P
author_facet Geramifard, Alborz
Walsh, Thomas J
Stefanie, Tellex
Chowdhary, Girish
Roy, Nicholas
How, Jonathan P
author_sort Geramifard, Alborz
collection CERN
description This tutorial reviews techniques for planning and learning in Markov Decision Processes (MDPs) with linear function approximation of the value function. Two major paradigms for finding optimal policies were considered: dynamic programming (DP) techniques for planning and reinforcement learning (RL).
id cern-2762208
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2013
publisher Now Publishers
record_format invenio
spelling cern-27622082021-04-21T16:39:13Zhttp://cds.cern.ch/record/2762208engGeramifard, AlborzWalsh, Thomas JStefanie, TellexChowdhary, GirishRoy, NicholasHow, Jonathan PA tutorial on linear function approximators for dynamic programming and reinforcement learningXXThis tutorial reviews techniques for planning and learning in Markov Decision Processes (MDPs) with linear function approximation of the value function. Two major paradigms for finding optimal policies were considered: dynamic programming (DP) techniques for planning and reinforcement learning (RL).Now Publishersoai:cds.cern.ch:27622082013
spellingShingle XX
Geramifard, Alborz
Walsh, Thomas J
Stefanie, Tellex
Chowdhary, Girish
Roy, Nicholas
How, Jonathan P
A tutorial on linear function approximators for dynamic programming and reinforcement learning
title A tutorial on linear function approximators for dynamic programming and reinforcement learning
title_full A tutorial on linear function approximators for dynamic programming and reinforcement learning
title_fullStr A tutorial on linear function approximators for dynamic programming and reinforcement learning
title_full_unstemmed A tutorial on linear function approximators for dynamic programming and reinforcement learning
title_short A tutorial on linear function approximators for dynamic programming and reinforcement learning
title_sort tutorial on linear function approximators for dynamic programming and reinforcement learning
topic XX
url http://cds.cern.ch/record/2762208
work_keys_str_mv AT geramifardalborz atutorialonlinearfunctionapproximatorsfordynamicprogrammingandreinforcementlearning
AT walshthomasj atutorialonlinearfunctionapproximatorsfordynamicprogrammingandreinforcementlearning
AT stefanietellex atutorialonlinearfunctionapproximatorsfordynamicprogrammingandreinforcementlearning
AT chowdharygirish atutorialonlinearfunctionapproximatorsfordynamicprogrammingandreinforcementlearning
AT roynicholas atutorialonlinearfunctionapproximatorsfordynamicprogrammingandreinforcementlearning
AT howjonathanp atutorialonlinearfunctionapproximatorsfordynamicprogrammingandreinforcementlearning
AT geramifardalborz tutorialonlinearfunctionapproximatorsfordynamicprogrammingandreinforcementlearning
AT walshthomasj tutorialonlinearfunctionapproximatorsfordynamicprogrammingandreinforcementlearning
AT stefanietellex tutorialonlinearfunctionapproximatorsfordynamicprogrammingandreinforcementlearning
AT chowdharygirish tutorialonlinearfunctionapproximatorsfordynamicprogrammingandreinforcementlearning
AT roynicholas tutorialonlinearfunctionapproximatorsfordynamicprogrammingandreinforcementlearning
AT howjonathanp tutorialonlinearfunctionapproximatorsfordynamicprogrammingandreinforcementlearning