Cargando…

A derivative-free two level random search method for unconstrained optimization

The book is intended for graduate students and researchers in mathematics, computer science, and operational research. The book presents a new derivative-free optimization method/algorithm based on randomly generated trial points in specified domains and where the best ones are selected at each iter...

Descripción completa

Detalles Bibliográficos
Autor principal: Andrei, Neculai
Lenguaje:eng
Publicado: Springer 2021
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-030-68517-1
http://cds.cern.ch/record/2763333
_version_ 1780970903027318784
author Andrei, Neculai
author_facet Andrei, Neculai
author_sort Andrei, Neculai
collection CERN
description The book is intended for graduate students and researchers in mathematics, computer science, and operational research. The book presents a new derivative-free optimization method/algorithm based on randomly generated trial points in specified domains and where the best ones are selected at each iteration by using a number of rules. This method is different from many other well established methods presented in the literature and proves to be competitive for solving many unconstrained optimization problems with different structures and complexities, with a relative large number of variables. Intensive numerical experiments with 140 unconstrained optimization problems, with up to 500 variables, have shown that this approach is efficient and robust. Structured into 4 chapters, Chapter 1 is introductory. Chapter 2 is dedicated to presenting a two level derivative-free random search method for unconstrained optimization. It is assumed that the minimizing function is continuous, lower bounded and its minimum value is known. Chapter 3 proves the convergence of the algorithm. In Chapter 4, the numerical performances of the algorithm are shown for solving 140 unconstrained optimization problems, out of which 16 are real applications. This shows that the optimization process has two phases: the reduction phase and the stalling one. Finally, the performances of the algorithm for solving a number of 30 large-scale unconstrained optimization problems up to 500 variables are presented. These numerical results show that this approach based on the two level random search method for unconstrained optimization is able to solve a large diversity of problems with different structures and complexities. There are a number of open problems which refer to the following aspects: the selection of the number of trial or the number of the local trial points, the selection of the bounds of the domains where the trial points and the local trial points are randomly generated and a criterion for initiating the line search.
id cern-2763333
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2021
publisher Springer
record_format invenio
spelling cern-27633332021-04-21T16:38:35Zdoi:10.1007/978-3-030-68517-1http://cds.cern.ch/record/2763333engAndrei, NeculaiA derivative-free two level random search method for unconstrained optimizationMathematical Physics and MathematicsThe book is intended for graduate students and researchers in mathematics, computer science, and operational research. The book presents a new derivative-free optimization method/algorithm based on randomly generated trial points in specified domains and where the best ones are selected at each iteration by using a number of rules. This method is different from many other well established methods presented in the literature and proves to be competitive for solving many unconstrained optimization problems with different structures and complexities, with a relative large number of variables. Intensive numerical experiments with 140 unconstrained optimization problems, with up to 500 variables, have shown that this approach is efficient and robust. Structured into 4 chapters, Chapter 1 is introductory. Chapter 2 is dedicated to presenting a two level derivative-free random search method for unconstrained optimization. It is assumed that the minimizing function is continuous, lower bounded and its minimum value is known. Chapter 3 proves the convergence of the algorithm. In Chapter 4, the numerical performances of the algorithm are shown for solving 140 unconstrained optimization problems, out of which 16 are real applications. This shows that the optimization process has two phases: the reduction phase and the stalling one. Finally, the performances of the algorithm for solving a number of 30 large-scale unconstrained optimization problems up to 500 variables are presented. These numerical results show that this approach based on the two level random search method for unconstrained optimization is able to solve a large diversity of problems with different structures and complexities. There are a number of open problems which refer to the following aspects: the selection of the number of trial or the number of the local trial points, the selection of the bounds of the domains where the trial points and the local trial points are randomly generated and a criterion for initiating the line search.Springeroai:cds.cern.ch:27633332021
spellingShingle Mathematical Physics and Mathematics
Andrei, Neculai
A derivative-free two level random search method for unconstrained optimization
title A derivative-free two level random search method for unconstrained optimization
title_full A derivative-free two level random search method for unconstrained optimization
title_fullStr A derivative-free two level random search method for unconstrained optimization
title_full_unstemmed A derivative-free two level random search method for unconstrained optimization
title_short A derivative-free two level random search method for unconstrained optimization
title_sort derivative-free two level random search method for unconstrained optimization
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-030-68517-1
http://cds.cern.ch/record/2763333
work_keys_str_mv AT andreineculai aderivativefreetwolevelrandomsearchmethodforunconstrainedoptimization
AT andreineculai derivativefreetwolevelrandomsearchmethodforunconstrainedoptimization