Cargando…
A derivative-free two level random search method for unconstrained optimization
The book is intended for graduate students and researchers in mathematics, computer science, and operational research. The book presents a new derivative-free optimization method/algorithm based on randomly generated trial points in specified domains and where the best ones are selected at each iter...
Autor principal: | Andrei, Neculai |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-030-68517-1 http://cds.cern.ch/record/2763333 |
Ejemplares similares
-
Nonlinear conjugate gradient methods for unconstrained optimization
por: Andrei, Neculai
Publicado: (2020) -
Methods for unconstrained optimization problems
por: Kowalik, Janusz S, et al.
Publicado: (1968) -
Introduction to unconstrained optimization with R
por: Mishra, Shashi Kant, et al.
Publicado: (2019) -
Exploiting negative curvature directions in linesearch methods for unconstrained optimization
por: Gould, N I M, et al.
Publicado: (1997) -
A linesearch algorithm with memory for unconstrained optimization
por: Gould, N I M, et al.
Publicado: (1998)