Cargando…
Laplacian growth on branched Riemann surfaces
This book studies solutions of the Polubarinova–Galin and Löwner–Kufarev equations, which describe the evolution of a viscous fluid (Hele-Shaw) blob, after the time when these solutions have lost their physical meaning due to loss of univalence of the mapping function involved. When the mapping func...
Autores principales: | Gustafsson, Björn, Lin, Yu-Lin |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-030-69863-8 http://cds.cern.ch/record/2763353 |
Ejemplares similares
-
Classical and stochastic Laplacian growth
por: Gustafsson, Björn, et al.
Publicado: (2014) -
The Riemann boundary problem on Riemann surfaces
por: Rodin, Yu L
Publicado: (1988) -
Hypoelliptic Laplacian and Bott–Chern cohomology: a theorem of Riemann–Roch–Grothendieck in complex geometry
por: Bismut, Jean-Michel
Publicado: (2013) -
Riemann surfaces
por: Ahlfors, Lars Valerian, et al.
Publicado: (1960) -
Riemann surfaces
por: Farkas, Hershel M, et al.
Publicado: (1980)