Cargando…
Surrogates: Gaussian process modeling, design, and optimization for the applied sciences
Autor principal: | Gramacy, Robert B |
---|---|
Lenguaje: | eng |
Publicado: |
CRC Press
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2763510 |
Ejemplares similares
-
Global Optimization Employing Gaussian Process-Based Bayesian Surrogates†
por: Preuss, Roland, et al.
Publicado: (2018) -
Topological optimization and optimal transport: in the applied sciences
por: Bergounioux, Maïtine, et al.
Publicado: (2017) -
Application of Gaussian process regression as a surrogate modeling method to assess the dynamics of COVID-19 propagation
por: Matveeva, Alexandra, et al.
Publicado: (2022) -
Representation of the response process of quadratic filters subjected to Gaussian noise
por: Nass, A
Publicado: (2001) -
Applied Engineering Sciences
por: Deng, Wei
Publicado: (2014)