Cargando…

Lectures and problems

Vladimir Arnold (1937-2010) was one of the great mathematical minds of the late 20th century. He did significant work in many areas of the field. On another level, he was keeping with a strong tradition in Russian mathematics to write for and to directly teach younger students interested in mathemat...

Descripción completa

Detalles Bibliográficos
Autores principales: Arnold, V I, Mathematical Sciences Research Institute (Berkeley, Calif) Staff
Lenguaje:eng
Publicado: American Mathematical Society 2015
Materias:
XX
Acceso en línea:http://cds.cern.ch/record/2763658
Descripción
Sumario:Vladimir Arnold (1937-2010) was one of the great mathematical minds of the late 20th century. He did significant work in many areas of the field. On another level, he was keeping with a strong tradition in Russian mathematics to write for and to directly teach younger students interested in mathematics. This book contains some examples of Arnold's contributions to the genre. "Continued Fractions" takes a common enrichment topic in high school math and pulls it in directions that only a master of mathematics could envision. "Euler Groups" treats a similar enrichment topic, but it is rarely treated with the depth and imagination lavished on it in Arnold's text. He sets it in a mathematical context, bringing to bear numerous tools of the trade and expanding the topic way beyond its usual treatment. In "Complex Numbers" the context is physics, yet Arnold artfully extracts the mathematical aspects of the discussion in a way that students can understand long before they master the field of quantum mechanics. "Problems for Children 5 to 15 Years Old" must be read as a collection of the author's favorite intellectual morsels. Many are not original, but all are worth thinking about, and each requires the solver to think out of his or her box. Dmitry Fuchs, a long-term friend and collaborator of Arnold, provided solutions to some of the problems. Readers are of course invited to select their own favorites and construct their own favorite solutions. In reading these essays, one has the sensation of walking along a path that is found to ascend a mountain peak and then being shown a vista whose existence one could never suspect from the ground. Arnold's style of exposition is unforgiving. The reader--even a professional mathematician--will find paragraphs that require hours of thought to unscramble, and he or she must have patience with the ellipses of