Cargando…
Propagating terraces and the dynamics of front-like solutions of reaction-diffusion equations on $Mathbb{R}$
The author considers semilinear parabolic equations of the form u_t=u_xx+f(u),\quad x\in \mathbb R,t>0, where f a C^1 function. Assuming that 0 and \gamma >0 are constant steady states, the author investigates the large-time behavior of the front-like solutions, that is, solutions u whose init...
Autor principal: | Poláčik, Peter |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2763792 |
Ejemplares similares
-
On self-similar sets with overlaps and inverse theorems for entropy in $ Mathbb{R}^{d}$
por: Hochman, Michael
Publicado: (2020) -
New complex analytic methods in the study of non-orientable minimal surfaces in $Mathbb{R}^{n}$
por: Alarcón, Antonio, et al.
Publicado: (2020) -
Taming Triangulation Dependence of $T$$^{6}$/$\mathbb{Z}$$_{2}$ x $\mathbb{Z}$$_{2}$ Resolutions
por: Faraggi, A.E., et al.
Publicado: (2021) -
On the existence of proper holomorphic mappings between some special domains in $\rm \mathbb C^n$
por: Ourimi, N, et al.
Publicado: (2000) -
Pole solutions for flame front propagation
por: Kupervasser, Oleg
Publicado: (2015)