Cargando…
New complex analytic methods in the study of non-orientable minimal surfaces in $Mathbb{R}^{n}$
The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in \mathbb{R}^n for any n\ge 3. These methods, which the authors develop essentially from the first principles, enable them to prove that the space...
Autores principales: | Alarcón, Antonio, Forstnerič, Franc, López, Francisco J |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2763793 |
Ejemplares similares
-
Minimal surfaces from a complex analytic viewpoint
por: Alarcón, Antonio, et al.
Publicado: (2021) -
On self-similar sets with overlaps and inverse theorems for entropy in $ Mathbb{R}^{d}$
por: Hochman, Michael
Publicado: (2020) -
Propagating terraces and the dynamics of front-like solutions of reaction-diffusion equations on $Mathbb{R}$
por: Poláčik, Peter
Publicado: (2020) -
On the existence of proper holomorphic mappings between some special domains in $\rm \mathbb C^n$
por: Ourimi, N, et al.
Publicado: (2000) -
$\mathbb R^3$ Index for Four-Dimensional $N=2$ Field Theories
por: Alexandrov, Sergei, et al.
Publicado: (2014)