Cargando…

Global well-posedness of high dimensional Maxwell-Dirac for small critical data

In this paper, the authors prove global well-posedness of the massless Maxwell-Dirac equation in the Coulomb gauge on \mathbb{R}^{1+d} (d\geq 4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncover...

Descripción completa

Detalles Bibliográficos
Autores principales: Gavrus, Cristian, Oh, Sung-Jin
Lenguaje:eng
Publicado: American Mathematical Society 2020
Materias:
XX
Acceso en línea:http://cds.cern.ch/record/2763795
Descripción
Sumario:In this paper, the authors prove global well-posedness of the massless Maxwell-Dirac equation in the Coulomb gauge on \mathbb{R}^{1+d} (d\geq 4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncovering null structure of Maxwell-Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant Dirac equation. A key step for achieving both is to exploit (and justify) a deep analogy between Maxwell-Dirac and Maxwell-Klein-Gordon (for which an analogous result was proved earlier by Krieger-Sterbenz-Tataru, which says that the most difficult part of Maxwell-Dirac takes essentially the same form as Maxwell-Klein-Gordon.