Cargando…
Global well-posedness of high dimensional Maxwell-Dirac for small critical data
In this paper, the authors prove global well-posedness of the massless Maxwell-Dirac equation in the Coulomb gauge on \mathbb{R}^{1+d} (d\geq 4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncover...
Autores principales: | Gavrus, Cristian, Oh, Sung-Jin |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2763795 |
Ejemplares similares
-
Global Well-posedness of Nonlinear Parabolic-Hyperbolic Coupled Systems
por: Qin, Yuming, et al.
Publicado: (2012) -
Well-posedness of parabolic difference equations
por: Ashyralyev, A, et al.
Publicado: (1994) -
Asymptotic completeness, global existence and the infrared problem for the Maxwell-Dirac equations
por: Flato, Moshé, et al.
Publicado: (1997) -
Metric characterizations for well-posedness of split hemivariational inequalities
por: Shu, Qiao-yuan, et al.
Publicado: (2018) -
Local Well-Posedness of Skew Mean Curvature Flow for Small Data in [Formula: see text] Dimensions
por: Huang, Jiaxi, et al.
Publicado: (2022)