Cargando…
Compressing PDF sets using generative adversarial networks
We present a compression algorithm for parton densities using synthetic replicas generated from the training of a generative adversarial network (GAN). The generated replicas are used to further enhance the statistics of a given Monte Carlo PDF set prior to compression. This results in a compression...
Autores principales: | Carrazza, Stefano, Cruz-Martinez, Juan M., Rabemananjara, Tanjona R. |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjc/s10052-021-09338-8 http://cds.cern.ch/record/2764309 |
Ejemplares similares
-
Precision determination of the strong coupling constant within a global PDF analysis
por: Ball, Richard D., et al.
Publicado: (2018) -
The PDF4LHC21 combination of global PDF fits for the LHC Run III
por: Ball, Richard D., et al.
Publicado: (2022) -
Theory prediction in PDF fitting
por: Barontini, Andrea, et al.
Publicado: (2023) -
Theory pipeline for PDF fitting
por: Barontini, Andrea, et al.
Publicado: (2022) -
Particle Generative Adversarial Networks for full-event simulation at the LHC and their application to pileup description
por: Arjona Martínez, Jesús, et al.
Publicado: (2019)