Cargando…
Application of Quantum Machine Learning using the Quantum Kernel Algorithm on High Energy Physics Analysis at the LHC
Quantum machine learning could possibly become a valuable alternative to classical machine learning for applications in high energy physics by offering computational speedups. In this study, we employ a support vector machine with a quantum kernel estimator (QSVM-Kernel method) to a recent LHC flags...
Autores principales: | Wu, Sau Lan, Sun, Shaojun, Guan, Wen, Zhou, Chen, Chan, Jay, Cheng, Chi Lung, Pham, Tuan, Qian, Yan, Wang, Alex Zeng, Zhang, Rui, Livny, Miron, Glick, Jennifer, Barkoutsos, Panagiotis Kl., Woerner, Stefan, Tavernelli, Ivano, Carminati, Federico, Di Meglio, Alberto, Li, Andy C.Y., Lykken, Joseph, Spentzouris, Panagiotis, Chen, Samuel Yen-Chi, Yoo, Shinjae, Wei, Tzu-Chieh |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevResearch.3.033221 http://cds.cern.ch/record/2764310 |
Ejemplares similares
-
Application of Quantum Machine Learning using the Quantum Variational Classifier Method to High Energy Physics Analysis at the LHC on IBM Quantum Computer Simulator and Hardware with 10 qubits
por: Wu, Sau Lan, et al.
Publicado: (2020) -
Quantum algorithm for alchemical optimization in material design
por: Barkoutsos, Panagiotis Kl., et al.
Publicado: (2021) -
Unravelling physics beyond the standard model with classical and quantum anomaly detection
por: Schuhmacher, Julian, et al.
Publicado: (2023) -
Quantum anomaly detection in the latent space of proton collision events at the LHC
por: Woźniak, Kinga Anna, et al.
Publicado: (2023) -
Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
por: Chan, Jay, et al.
Publicado: (2021)