Cargando…
Non-abelian infrared divergences on the celestial sphere
We consider the infrared factorisation of non-abelian multi-particle scattering amplitudes, and we study the form of the universal colour operator responsible for infrared divergences, when expressed in terms of coordinates on the ‘celestial sphere’ intersecting the future light-cone at asymptotic d...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP05(2021)282 http://cds.cern.ch/record/2764900 |
_version_ | 1780971131227865088 |
---|---|
author | Magnea, Lorenzo |
author_facet | Magnea, Lorenzo |
author_sort | Magnea, Lorenzo |
collection | CERN |
description | We consider the infrared factorisation of non-abelian multi-particle scattering amplitudes, and we study the form of the universal colour operator responsible for infrared divergences, when expressed in terms of coordinates on the ‘celestial sphere’ intersecting the future light-cone at asymptotic distances. We find that colour-dipole contributions to the infrared operator, to all orders in perturbation theory, have a remarkably simple expression in these coordinates, with scale and coupling dependence factorised from kinematics and colour. Generalising earlier suggestions in the abelian theory, we then show that the infrared operator can be computed as a correlator of vertex operators in a conformal field theory of Lie-algebra-valued free bosons on the celestial sphere. We verify by means of the OPE that the theory correctly predicts the all-order structure of collinear limits, and the tree-level factorisation of soft real radiation. |
id | cern-2764900 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-27649002023-10-04T08:50:09Zdoi:10.1007/JHEP05(2021)282http://cds.cern.ch/record/2764900engMagnea, LorenzoNon-abelian infrared divergences on the celestial spherehep-thParticle Physics - Theoryhep-phParticle Physics - PhenomenologyWe consider the infrared factorisation of non-abelian multi-particle scattering amplitudes, and we study the form of the universal colour operator responsible for infrared divergences, when expressed in terms of coordinates on the ‘celestial sphere’ intersecting the future light-cone at asymptotic distances. We find that colour-dipole contributions to the infrared operator, to all orders in perturbation theory, have a remarkably simple expression in these coordinates, with scale and coupling dependence factorised from kinematics and colour. Generalising earlier suggestions in the abelian theory, we then show that the infrared operator can be computed as a correlator of vertex operators in a conformal field theory of Lie-algebra-valued free bosons on the celestial sphere. We verify by means of the OPE that the theory correctly predicts the all-order structure of collinear limits, and the tree-level factorisation of soft real radiation.We consider the infrared factorisation of non-abelian multi-particle scattering amplitudes, and we study the form of the universal colour operator responsible for infrared divergences, when expressed in terms of coordinates on the `celestial sphere' intersecting the future light-cone at asymptotic distances. We find that colour-dipole contributions to the infrared operator, to all orders in perturbation theory, have a remarkably simple expression in these coordinates, with scale and coupling dependence factorised from kinematics and colour. Generalising earlier suggestions in the abelian theory, we then show that the infrared operator can be computed as a correlator of vertex operators in a conformal field theory of Lie-algebra-valued free bosons on the celestial sphere. We verify by means of the OPE that the theory correctly predicts the all-order structure of collinear limits, and the tree-level factorisation of soft real radiation.arXiv:2104.10254CERN-TH-2021-063oai:cds.cern.ch:27649002021-04-20 |
spellingShingle | hep-th Particle Physics - Theory hep-ph Particle Physics - Phenomenology Magnea, Lorenzo Non-abelian infrared divergences on the celestial sphere |
title | Non-abelian infrared divergences on the celestial sphere |
title_full | Non-abelian infrared divergences on the celestial sphere |
title_fullStr | Non-abelian infrared divergences on the celestial sphere |
title_full_unstemmed | Non-abelian infrared divergences on the celestial sphere |
title_short | Non-abelian infrared divergences on the celestial sphere |
title_sort | non-abelian infrared divergences on the celestial sphere |
topic | hep-th Particle Physics - Theory hep-ph Particle Physics - Phenomenology |
url | https://dx.doi.org/10.1007/JHEP05(2021)282 http://cds.cern.ch/record/2764900 |
work_keys_str_mv | AT magnealorenzo nonabelianinfrareddivergencesonthecelestialsphere |