Cargando…
Long Short-Term Memory Recurrent Neural Network for the Fully-Automatic Collimator Beam-Based Alignment in the Large Hadron Collider (LHC)
The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) is the world’s largest particle accelerator. Due to the high energy and high luminosity that the LHC can reach, a complex beam collimation system, comprising some 100 collimators is required to clean beam losses...
Autor principal: | Ricci, Gianmarco |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2765899 |
Ejemplares similares
-
New Machine Learning Model Application for the Automatic LHC Collimator Beam-Based Alignment
por: Azzopardi, Gabriella, et al.
Publicado: (2022) -
Operational results on the fully automatic LHC collimator alignment
por: Azzopardi, Gabriella, et al.
Publicado: (2019) -
Beam Collimation at Hadron Colliders
por: Mokhov, N V
Publicado: (2004) -
Fast Automatic Beam-Based Alignment of the LHC Collimator Jaws
por: Valentino, Gianluca
Publicado: (2014) -
Automatic Beam Loss Threshold Selection for LHC Collimator Alignment
por: Azzopardi, Gabriella, et al.
Publicado: (2020)