Cargando…
The Tracking Machine Learning challenge : Throughput phase
This paper reports on the second “Throughput” phase of the Tracking Machine Learning (TrackML) challenge on the Codalab platform. As in the first “Accuracy” phase, the participants had to solve a difficult experimental problem linked to tracking accurately the trajectory of particles as e.g. created...
Autores principales: | Amrouche, Sabrina, Basara, Laurent, Calafiura, Paolo, Emeliyanov, Dmitry, Estrade, Victor, Farrell, Steven, Germain, Cécile, Gligorov, Vladimir Vava, Golling, Tobias, Gorbunov, Sergey, Gray, Heather, Guyon, Isabelle, Hushchyn, Mikhail, Innocente, Vincenzo, Kiehn, Moritz, Kunze, Marcel, Moyse, Edward, Rousseau, David, Salzburger, Andreas, Ustyuzhanin, Andrey, Vlimant, Jean-Roch, Yilmaz, Yetkin |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s41781-023-00094-w http://cds.cern.ch/record/2766066 |
Ejemplares similares
-
The TrackML high-energy physics tracking challenge on Kaggle
por: Kiehn, Moritz, et al.
Publicado: (2019) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
TrackML : a tracking Machine Learning challenge
por: Golling, Tobias, et al.
Publicado: (2019) -
TrackML: A High Energy Physics Particle Tracking Challenge
por: Calafiura, Polo, et al.
Publicado: (2018)