Cargando…
Quantum spectral problems and isomonodromic deformations
We develop a self-consistent approach to study the spectral properties of a class of quantum mechanical operators by using the knowledge about monodromies of $2\times 2$ linear systems (Riemann–Hilbert correspondence). Our technique applies to a variety of problems, though in this paper we only anal...
Autores principales: | Bershtein, Mikhail, Gavrylenko, Pavlo, Grassi, Alba |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s00220-022-04369-y http://cds.cern.ch/record/2766574 |
Ejemplares similares
-
Connecting topological strings and spectral theory via non-autonomous Toda equations
por: Gavrylenko, Pavlo, et al.
Publicado: (2023) -
The exact $C$-function in integrable $\lambda$-deformed theories
por: Georgiou, George, et al.
Publicado: (2018) -
Integrable deformations of the $G_{k_1} \times G_{k_2}/G_{k_1+k_2}$ coset CFTs
por: Sfetsos, Konstantinos, et al.
Publicado: (2017) -
Analytical solutions of the Klein-Fock-Gordon equation with the Manning-Rosen potential plus a Ring-Shaped like potential
por: Ahmadov, A I, et al.
Publicado: (2014) -
RG flows for $\lambda$-deformed CFTs
por: Sagkrioti, Eftychia, et al.
Publicado: (2018)