Cargando…
Jet Single Shot Detection
We apply object detection techniques based on Convolutional Neural Networks to jet reconstruction and identification at the CERN Large Hadron Collider. In particular, we focus on CaloJet reconstruction, representing each event as an image composed of calorimeter cells and using a Single Shot Detecti...
Autores principales: | Pol, Adrian Alan, Aarrestad, Thea, Govorkova, Katya, Halily, Roi, Klempner, Anat, Kopetz, Tal, Loncar, Vladimir, Ngadiuba, Jennifer, Pierini, Maurizio, Sirkin, Olya, Summers, Sioni |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202125104027 http://cds.cern.ch/record/2766650 |
Ejemplares similares
-
Lightweight Jet Reconstruction and Identification as an Object Detection Task
por: Pol, Adrian Alan, et al.
Publicado: (2022) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider
por: Govorkova, Ekaterina, et al.
Publicado: (2021) -
Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors
por: Coelho, Claudionor N., et al.
Publicado: (2020) -
LHC physics dataset for unsupervised New Physics detection at 40 MHz
por: Govorkova, Ekaterina, et al.
Publicado: (2021)