Cargando…
Towards a realistic track reconstruction algorithm based on graph neural networks for the HL-LHC
<!--HTML-->The physics reach of the HL-LHC will be limited by how efficiently the experiments can use the available computing resources, i.e. affordable software and computing are essential. The development of novel methods for charged particle reconstruction at the HL-LHC incorporating machin...
Autor principal: | Rougier, Charline |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2766894 |
Ejemplares similares
-
Graph Neural Network Track Reconstruction for the ATLAS ITk Detector
por: Murnane, Daniel Thomas, et al.
Publicado: (2022) -
A CMS Level-1 Track Finder for the HL-LHC
por: Yates, Brent
Publicado: (2021) -
A novel reconstruction framework for an imaging calorimeter for HL-LHC
por: Cristella, Leonardo
Publicado: (2021) -
Graph Neural Network for Object Reconstruction in Liquid Argon Time Projection Chambers
por: Hewes, Jeremy Edmund
Publicado: (2021) -
The Apollo ATCA design for CMS Track Finder and Pixel Readout at the HL-LHC
por: Zou, Rui
Publicado: (2021)