Cargando…
The use of Boosted Decision Trees for Energy Reconstruction in JUNO experiment
<!--HTML-->The Jiangmen Underground Neutrino Observatory (JUNO) is a neutrino experiment with a broad physical program. The main goals of JUNO are the determination of the neutrino mass ordering and high precision investigation of neutrino oscillation properties. The precise reconstruction of...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2766968 |
_version_ | 1780971251769016320 |
---|---|
author | Gavrikov, Arsenii |
author_facet | Gavrikov, Arsenii |
author_sort | Gavrikov, Arsenii |
collection | CERN |
description | <!--HTML-->The Jiangmen Underground Neutrino Observatory (JUNO) is a neutrino experiment with a broad physical program. The main goals of JUNO are the determination of the neutrino mass ordering and high precision investigation of neutrino oscillation properties. The precise reconstruction of the event energy is crucial for the success of the experiment.
JUNO is equiped with 17 612 + 25 600 PMT channels of two kind which provide both charge and hit time information. In this work we present a fast Boosted Decision Trees model using small set of aggregated features. The model predicts event energy deposition. We describe the motivation and the details of our feature engineering and feature selection procedures. We demonstrate that the proposed aggregated approach can achieve a reconstruction quality that is competitive with the quality of much more complex models like Convolution Neural Networks (ResNet, VGG and GNN). |
id | cern-2766968 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-27669682022-11-02T22:25:52Zhttp://cds.cern.ch/record/2766968engGavrikov, ArseniiThe use of Boosted Decision Trees for Energy Reconstruction in JUNO experiment25th International Conference on Computing in High Energy & Nuclear PhysicsConferences<!--HTML-->The Jiangmen Underground Neutrino Observatory (JUNO) is a neutrino experiment with a broad physical program. The main goals of JUNO are the determination of the neutrino mass ordering and high precision investigation of neutrino oscillation properties. The precise reconstruction of the event energy is crucial for the success of the experiment. JUNO is equiped with 17 612 + 25 600 PMT channels of two kind which provide both charge and hit time information. In this work we present a fast Boosted Decision Trees model using small set of aggregated features. The model predicts event energy deposition. We describe the motivation and the details of our feature engineering and feature selection procedures. We demonstrate that the proposed aggregated approach can achieve a reconstruction quality that is competitive with the quality of much more complex models like Convolution Neural Networks (ResNet, VGG and GNN).oai:cds.cern.ch:27669682021 |
spellingShingle | Conferences Gavrikov, Arsenii The use of Boosted Decision Trees for Energy Reconstruction in JUNO experiment |
title | The use of Boosted Decision Trees for Energy Reconstruction in JUNO experiment |
title_full | The use of Boosted Decision Trees for Energy Reconstruction in JUNO experiment |
title_fullStr | The use of Boosted Decision Trees for Energy Reconstruction in JUNO experiment |
title_full_unstemmed | The use of Boosted Decision Trees for Energy Reconstruction in JUNO experiment |
title_short | The use of Boosted Decision Trees for Energy Reconstruction in JUNO experiment |
title_sort | use of boosted decision trees for energy reconstruction in juno experiment |
topic | Conferences |
url | http://cds.cern.ch/record/2766968 |
work_keys_str_mv | AT gavrikovarsenii theuseofboosteddecisiontreesforenergyreconstructioninjunoexperiment AT gavrikovarsenii 25thinternationalconferenceoncomputinginhighenergynuclearphysics AT gavrikovarsenii useofboosteddecisiontreesforenergyreconstructioninjunoexperiment |