Cargando…
Conditional Wasserstein Generative Adversarial Networks for Fast Detector Simulation
<!--HTML-->Detector simulation in high energy physics experiments is a key yet computationally expensive step in the event simulation process. There has been much recent interest in using deep generative models as a faster alternative to the full Monte Carlo simulation process in situations in...
Autor principal: | Blue, John |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2766983 |
Ejemplares similares
-
Fast simulation of the electromagnetic calorimeter response using Self-Attention Generative Adversarial Networks
por: Rogachev, Alexander
Publicado: (2021) -
Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network
por: Erdmann, Martin, et al.
Publicado: (2018) -
Pixel Detector Background Generation using Generative Adversarial Networks at Belle II
por: Hashemi, Hosein
Publicado: (2021) -
Missing Features Reconstruction Using a Wasserstein Generative Adversarial Imputation Network
por: Friedjungová, Magda, et al.
Publicado: (2020) -
Prediction and analysis of multiple protein lysine modified sites based on conditional wasserstein generative adversarial networks
por: Yang, Yingxi, et al.
Publicado: (2021)