Cargando…
Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters
<!--HTML-->Within the Phase-II upgrade of the LHC, the readout electronics of the ATLAS LAr Calorimeters is prepared for high luminosity operation expecting a pile-up of up to 200 simultaneous pp interactions. Moreover, the calorimeter signals of up to 25 subsequent collisions are overlapping,...
Autor principal: | Calvet, Thomas |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2767022 |
Ejemplares similares
-
Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters
por: Aad, Georges, et al.
Publicado: (2021) -
Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters
por: Voigt, Johann Christoph
Publicado: (2021) -
Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters
por: Fritzsche, Nick
Publicado: (2021) -
AI for measuring energy deposits in the ATLAS LAr calorimeter in real time
por: Calvet, Thomas Philippe
Publicado: (2021) -
Embedded Neural Networks on FPGAs for Real-Time Computation of the Energy Deposited in the ATLAS Liquid Argon Calorimeter
por: Aad, Georges
Publicado: (2022)