Cargando…
Development of FPGA-based neural network regression models for the ATLAS Phase-II barrel muon trigger upgrade
<!--HTML-->Effective selection of muon candidates is the cornerstone of the LHC physics programme. The ATLAS experiment uses the two-level trigger system for real-time selections of interesting events. The first-level hardware trigger system uses the Resistive Plate Chamber detector (RPC) for...
Autor principal: | Ospanov, Rustem |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2767066 |
Ejemplares similares
-
Fast and resource-efficient Deep Neural Network on FPGA for the Phase-II Level-0 muon barrel trigger of the ATLAS experiment
por: Giagu, Stefano
Publicado: (2020) -
Upgrade of the ATLAS Muon Barrel Trigger for HL-LHC.
por: Biondi, Silvia
Publicado: (2015) -
Upgrade of the ATLAS Muon Barrel Trigger for HL-LHC
por: Romano, Marino, et al.
Publicado: (2015) -
Timing for the ATLAS Phase-II Upgrade
por: Boumediene, Djamel Eddine
Publicado: (2020) -
The Ocean and Octopus designs for the Phase-2 upgrade of the CMS L1 muon trigger
por: Bachtis, Michail
Publicado: (2021)