Cargando…
Graph Variational Autoencoder for Detector Reconstruction and Fast Simulation in High-Energy Physics
<!--HTML-->Accurate and fast simulation of particle physics processes is crucial for the high-energy physics community. Simulating particle interactions with the detector is both time consuming and computationally expensive. With its proton-proton collision energy of 13 TeV, the Large Hadron C...
Autor principal: | Hariri, Ali |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2767134 |
Ejemplares similares
-
Graph Network in High Energy Physics
por: Vlimant, Jean-Roch
Publicado: (2019) -
Fast simulation of Time-of-Flight detectors at the LHC
por: Rousselle, Olivier
Publicado: (2021) -
Graph Neural Network Architectures for Fast Simulation and Muon Momentum Inference at the CMS Detector
por: Hariri, Ali
Publicado: (2021) -
Conditional Wasserstein Generative Adversarial Networks for Fast Detector Simulation
por: Blue, John
Publicado: (2021) -
Particle-based Fast Jet Simulation at the LHC with Variational Autoencoders
por: Touranakou, Mary, et al.
Publicado: (2022)