Cargando…
Fast and Accurate Electromagnetic and Hadronic Showers from Generative Models
<!--HTML-->Generative machine learning models offer a promising way to efficiently amplify classical Monte Carlo generators' statistics for event simulation and generation in particle physics. Given the already high computational cost of simulation and the expected increase in data in the...
Autor principal: | Diefenbacher, Sascha Daniel |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2767274 |
Ejemplares similares
-
A fast parametrization of electromagnetic and hadronic calorimeter showers
por: Mahboubi, K, et al.
Publicado: (2005) -
Fast simulation of electromagnetic showers in the ATLAS calorimeter: Frozen showers
por: Barberio, E, et al.
Publicado: (2009) -
Fast simulation of the electromagnetic calorimeter response using Self-Attention Generative Adversarial Networks
por: Rogachev, Alexander
Publicado: (2021) -
Parton showers and matching
por: Prestel, Stefan
Publicado: (2022) -
Theoretical overview of Dark Showers
por: Bernreuther, Elias
Publicado: (2021)