Cargando…
Multi-particle reconstruction in the High Granularity Calorimeter using object condensation and graph neural networks
<!--HTML-->The high-luminosity upgrade of the LHC will come with unprecedented physics and computing challenges. One of these challenges is the accurate reconstruction of particles in events with up to 200 simultaneous proton-proton interactions. The planned CMS High Granularity Calorimeter of...
Autor principal: | Qasim, Shah Rukh |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2767293 |
Ejemplares similares
-
Multi-particle reconstruction in the High Granularity Calorimeter using object condensation and graph neural networks
por: Qasim, Shah Rukh, et al.
Publicado: (2021) -
Multi-Particle Reconstruction with Dynamic Graph Neural Networks
por: Qasim, Shah Rukh
Publicado: (2023) -
End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks
por: Qasim, Shah Rukh, et al.
Publicado: (2022) -
Graph Neural Network for Object Reconstruction in Liquid Argon Time Projection Chambers
por: Hewes, Jeremy Edmund
Publicado: (2021) -
High Granularity Calorimeter Reconstruction Results using a Graph Neural Network
por: CMS Collaboration
Publicado: (2022)