Cargando…
Physics Validation of Novel Convolutional 2D Architectures for Speeding Up High Energy Physics Simulations
The precise simulation of particle transport through detectors remains a key element for the successful interpretation of high energy physics results. However, Monte Carlo based simulation is extremely demanding in terms of computing resources. This challenge motivates investigations of faster, alte...
Autores principales: | Rehm, Florian, Vallecorsa, Sofia, Borras, Kerstin, Krücker, Dirk |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202125103042 http://cds.cern.ch/record/2767379 |
Ejemplares similares
-
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Validation of Deep Convolutional Generative Adversarial Networks for High Energy Physics Calorimeter Simulations
por: Rehm, Florian, et al.
Publicado: (2021) -
Quantum Generative Adversarial Networks in a Continuous-Variable Architecture to Simulate High Energy Physics Detectors
por: Chang, Su Yeon, et al.
Publicado: (2021) -
Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
por: Borras, Hendrik, et al.
Publicado: (2022)