Cargando…

Evolution of the energy efficiency of LHCb's real-time processing

<!--HTML-->The upgraded LHCb detector, due to start datataking in 2022, will have to process an average data rate of 4~TB/s in real time. Because LHCb's physics objectives require that the full detector information for every LHC bunch crossing is read out and made available for real-time...

Descripción completa

Detalles Bibliográficos
Autor principal: Schwemmer, Rainer
Lenguaje:eng
Publicado: 2021
Materias:
Acceso en línea:http://cds.cern.ch/record/2767797
_version_ 1780971322877149184
author Schwemmer, Rainer
author_facet Schwemmer, Rainer
author_sort Schwemmer, Rainer
collection CERN
description <!--HTML-->The upgraded LHCb detector, due to start datataking in 2022, will have to process an average data rate of 4~TB/s in real time. Because LHCb's physics objectives require that the full detector information for every LHC bunch crossing is read out and made available for real-time processing, this challenge mirrors that of the ATLAS and CMS HL-LHC software triggers, but deliverable five years earlier. Over the past six years, the LHCb collaboration has undertaken a bottom-up rewrite of its software infrastructure, pattern recognition, and selection algorithms to make them better able to efficiently exploit modern highly parallel computing architectures. We review the impact of this reoptimization on the energy efficiency of the real-time processing software and hardware which will be used for the upgrade of the LHCb detector. We also review the impact of LHCb's decision to adopt a hybrid computing architecture consisting of GPUs and CPUs for the real-time part of its upgrade data processing. We discuss the implications of these results on how LHCb's real-time power requirements may evolve in the future, particularly in the context of a planned second upgrade of the detector.
id cern-2767797
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2021
record_format invenio
spelling cern-27677972022-11-02T22:25:24Zhttp://cds.cern.ch/record/2767797engSchwemmer, RainerEvolution of the energy efficiency of LHCb's real-time processing25th International Conference on Computing in High Energy & Nuclear PhysicsConferences<!--HTML-->The upgraded LHCb detector, due to start datataking in 2022, will have to process an average data rate of 4~TB/s in real time. Because LHCb's physics objectives require that the full detector information for every LHC bunch crossing is read out and made available for real-time processing, this challenge mirrors that of the ATLAS and CMS HL-LHC software triggers, but deliverable five years earlier. Over the past six years, the LHCb collaboration has undertaken a bottom-up rewrite of its software infrastructure, pattern recognition, and selection algorithms to make them better able to efficiently exploit modern highly parallel computing architectures. We review the impact of this reoptimization on the energy efficiency of the real-time processing software and hardware which will be used for the upgrade of the LHCb detector. We also review the impact of LHCb's decision to adopt a hybrid computing architecture consisting of GPUs and CPUs for the real-time part of its upgrade data processing. We discuss the implications of these results on how LHCb's real-time power requirements may evolve in the future, particularly in the context of a planned second upgrade of the detector.oai:cds.cern.ch:27677972021
spellingShingle Conferences
Schwemmer, Rainer
Evolution of the energy efficiency of LHCb's real-time processing
title Evolution of the energy efficiency of LHCb's real-time processing
title_full Evolution of the energy efficiency of LHCb's real-time processing
title_fullStr Evolution of the energy efficiency of LHCb's real-time processing
title_full_unstemmed Evolution of the energy efficiency of LHCb's real-time processing
title_short Evolution of the energy efficiency of LHCb's real-time processing
title_sort evolution of the energy efficiency of lhcb's real-time processing
topic Conferences
url http://cds.cern.ch/record/2767797
work_keys_str_mv AT schwemmerrainer evolutionoftheenergyefficiencyoflhcbsrealtimeprocessing
AT schwemmerrainer 25thinternationalconferenceoncomputinginhighenergynuclearphysics