Cargando…

A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC

Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be imp...

Descripción completa

Detalles Bibliográficos
Autores principales: Di Guglielmo, Giuseppe, Fahim, Farah, Herwig, Christian, Valentin, Manuel Blanco, Duarte, Javier, Gingu, Cristian, Harris, Philip, Hirschauer, James, Kwok, Martin, Loncar, Vladimir, Luo, Yingyi, Miranda, Llovizna, Ngadiuba, Jennifer, Noonan, Daniel, Ogrenci-Memik, Seda, Pierini, Maurizio, Summers, Sioni, Tran, Nhan
Lenguaje:eng
Publicado: 2021
Materias:
Acceso en línea:https://dx.doi.org/10.1109/TNS.2021.3087100
http://cds.cern.ch/record/2770527
_version_ 1780971325480763392
author Di Guglielmo, Giuseppe
Fahim, Farah
Herwig, Christian
Valentin, Manuel Blanco
Duarte, Javier
Gingu, Cristian
Harris, Philip
Hirschauer, James
Kwok, Martin
Loncar, Vladimir
Luo, Yingyi
Miranda, Llovizna
Ngadiuba, Jennifer
Noonan, Daniel
Ogrenci-Memik, Seda
Pierini, Maurizio
Summers, Sioni
Tran, Nhan
author_facet Di Guglielmo, Giuseppe
Fahim, Farah
Herwig, Christian
Valentin, Manuel Blanco
Duarte, Javier
Gingu, Cristian
Harris, Philip
Hirschauer, James
Kwok, Martin
Loncar, Vladimir
Luo, Yingyi
Miranda, Llovizna
Ngadiuba, Jennifer
Noonan, Daniel
Ogrenci-Memik, Seda
Pierini, Maurizio
Summers, Sioni
Tran, Nhan
author_sort Di Guglielmo, Giuseppe
collection CERN
description Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be implemented in a radiation-tolerant application-specific integrated circuit (ASIC) to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile. For our application, we consider the high-granularity calorimeter from the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider. The advantage of the machine learning approach is in the flexibility and configurability of the algorithm. By changing the NN weights, a unique data compression algorithm can be deployed for each sensor in different detector regions and changing detector or collider conditions. To meet area, performance, and power constraints, we perform quantization-aware training to create an optimized NN hardware implementation. The design is achieved through the use of high-level synthesis tools and the <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">hls4ml</monospace> framework and was processed through synthesis and physical layout flows based on a low-power (LP)-CMOS 65-nm technology node. The flow anticipates 200 Mrad of ionizing radiation to select gates and reports a total area of 3.6 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and consumes 95 mW of power. The simulated energy consumption per inference is 2.4 nJ. This is the first radiation-tolerant on-detector ASIC implementation of an NN that has been designed for particle physics applications.
id cern-2770527
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2021
record_format invenio
spelling cern-27705272023-01-31T10:17:25Zdoi:10.1109/TNS.2021.3087100http://cds.cern.ch/record/2770527engDi Guglielmo, GiuseppeFahim, FarahHerwig, ChristianValentin, Manuel BlancoDuarte, JavierGingu, CristianHarris, PhilipHirschauer, JamesKwok, MartinLoncar, VladimirLuo, YingyiMiranda, LloviznaNgadiuba, JenniferNoonan, DanielOgrenci-Memik, SedaPierini, MaurizioSummers, SioniTran, NhanA reconfigurable neural network ASIC for detector front-end data compression at the HL-LHChep-exParticle Physics - Experimentcs.LGComputing and Computersphysics.ins-detDetectors and Experimental TechniquesDespite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be implemented in a radiation-tolerant application-specific integrated circuit (ASIC) to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile. For our application, we consider the high-granularity calorimeter from the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider. The advantage of the machine learning approach is in the flexibility and configurability of the algorithm. By changing the NN weights, a unique data compression algorithm can be deployed for each sensor in different detector regions and changing detector or collider conditions. To meet area, performance, and power constraints, we perform quantization-aware training to create an optimized NN hardware implementation. The design is achieved through the use of high-level synthesis tools and the <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">hls4ml</monospace> framework and was processed through synthesis and physical layout flows based on a low-power (LP)-CMOS 65-nm technology node. The flow anticipates 200 Mrad of ionizing radiation to select gates and reports a total area of 3.6 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and consumes 95 mW of power. The simulated energy consumption per inference is 2.4 nJ. This is the first radiation-tolerant on-detector ASIC implementation of an NN that has been designed for particle physics applications.Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network autoencoder model can be implemented in a radiation tolerant ASIC to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile. For our application, we consider the high-granularity calorimeter from the CMS experiment at the CERN Large Hadron Collider. The advantage of the machine learning approach is in the flexibility and configurability of the algorithm. By changing the neural network weights, a unique data compression algorithm can be deployed for each sensor in different detector regions, and changing detector or collider conditions. To meet area, performance, and power constraints, we perform a quantization-aware training to create an optimized neural network hardware implementation. The design is achieved through the use of high-level synthesis tools and the hls4ml framework, and was processed through synthesis and physical layout flows based on a LP CMOS 65 nm technology node. The flow anticipates 200 Mrad of ionizing radiation to select gates, and reports a total area of 3.6 mm$^{2}$ and consumes 95 mW of power. The simulated energy consumption per inference is 2.4 nJ. This is the first radiation tolerant on-detector ASIC implementation of a neural network that has been designed for particle physics applications.arXiv:2105.01683FERMILAB-PUB-21-217-CMS-E-SCDoai:cds.cern.ch:27705272021-05-04
spellingShingle hep-ex
Particle Physics - Experiment
cs.LG
Computing and Computers
physics.ins-det
Detectors and Experimental Techniques
Di Guglielmo, Giuseppe
Fahim, Farah
Herwig, Christian
Valentin, Manuel Blanco
Duarte, Javier
Gingu, Cristian
Harris, Philip
Hirschauer, James
Kwok, Martin
Loncar, Vladimir
Luo, Yingyi
Miranda, Llovizna
Ngadiuba, Jennifer
Noonan, Daniel
Ogrenci-Memik, Seda
Pierini, Maurizio
Summers, Sioni
Tran, Nhan
A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC
title A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC
title_full A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC
title_fullStr A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC
title_full_unstemmed A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC
title_short A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC
title_sort reconfigurable neural network asic for detector front-end data compression at the hl-lhc
topic hep-ex
Particle Physics - Experiment
cs.LG
Computing and Computers
physics.ins-det
Detectors and Experimental Techniques
url https://dx.doi.org/10.1109/TNS.2021.3087100
http://cds.cern.ch/record/2770527
work_keys_str_mv AT diguglielmogiuseppe areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT fahimfarah areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT herwigchristian areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT valentinmanuelblanco areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT duartejavier areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT gingucristian areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT harrisphilip areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT hirschauerjames areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT kwokmartin areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT loncarvladimir areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT luoyingyi areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT mirandallovizna areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT ngadiubajennifer areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT noonandaniel areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT ogrencimemikseda areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT pierinimaurizio areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT summerssioni areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT trannhan areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT diguglielmogiuseppe reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT fahimfarah reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT herwigchristian reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT valentinmanuelblanco reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT duartejavier reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT gingucristian reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT harrisphilip reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT hirschauerjames reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT kwokmartin reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT loncarvladimir reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT luoyingyi reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT mirandallovizna reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT ngadiubajennifer reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT noonandaniel reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT ogrencimemikseda reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT pierinimaurizio reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT summerssioni reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc
AT trannhan reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc