Cargando…
A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC
Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be imp...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/TNS.2021.3087100 http://cds.cern.ch/record/2770527 |
_version_ | 1780971325480763392 |
---|---|
author | Di Guglielmo, Giuseppe Fahim, Farah Herwig, Christian Valentin, Manuel Blanco Duarte, Javier Gingu, Cristian Harris, Philip Hirschauer, James Kwok, Martin Loncar, Vladimir Luo, Yingyi Miranda, Llovizna Ngadiuba, Jennifer Noonan, Daniel Ogrenci-Memik, Seda Pierini, Maurizio Summers, Sioni Tran, Nhan |
author_facet | Di Guglielmo, Giuseppe Fahim, Farah Herwig, Christian Valentin, Manuel Blanco Duarte, Javier Gingu, Cristian Harris, Philip Hirschauer, James Kwok, Martin Loncar, Vladimir Luo, Yingyi Miranda, Llovizna Ngadiuba, Jennifer Noonan, Daniel Ogrenci-Memik, Seda Pierini, Maurizio Summers, Sioni Tran, Nhan |
author_sort | Di Guglielmo, Giuseppe |
collection | CERN |
description | Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be implemented in a radiation-tolerant application-specific integrated circuit (ASIC) to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile. For our application, we consider the high-granularity calorimeter from the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider. The advantage of the machine learning approach is in the flexibility and configurability of the algorithm. By changing the NN weights, a unique data compression algorithm can be deployed for each sensor in different detector regions and changing detector or collider conditions. To meet area, performance, and power constraints, we perform quantization-aware training to create an optimized NN hardware implementation. The design is achieved through the use of high-level synthesis tools and the
<monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">hls4ml</monospace>
framework and was processed through synthesis and physical layout flows based on a low-power (LP)-CMOS 65-nm technology node. The flow anticipates 200 Mrad of ionizing radiation to select gates and reports a total area of 3.6 mm
<sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup>
and consumes 95 mW of power. The simulated energy consumption per inference is 2.4 nJ. This is the first radiation-tolerant on-detector ASIC implementation of an NN that has been designed for particle physics applications. |
id | cern-2770527 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-27705272023-01-31T10:17:25Zdoi:10.1109/TNS.2021.3087100http://cds.cern.ch/record/2770527engDi Guglielmo, GiuseppeFahim, FarahHerwig, ChristianValentin, Manuel BlancoDuarte, JavierGingu, CristianHarris, PhilipHirschauer, JamesKwok, MartinLoncar, VladimirLuo, YingyiMiranda, LloviznaNgadiuba, JenniferNoonan, DanielOgrenci-Memik, SedaPierini, MaurizioSummers, SioniTran, NhanA reconfigurable neural network ASIC for detector front-end data compression at the HL-LHChep-exParticle Physics - Experimentcs.LGComputing and Computersphysics.ins-detDetectors and Experimental TechniquesDespite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be implemented in a radiation-tolerant application-specific integrated circuit (ASIC) to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile. For our application, we consider the high-granularity calorimeter from the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider. The advantage of the machine learning approach is in the flexibility and configurability of the algorithm. By changing the NN weights, a unique data compression algorithm can be deployed for each sensor in different detector regions and changing detector or collider conditions. To meet area, performance, and power constraints, we perform quantization-aware training to create an optimized NN hardware implementation. The design is achieved through the use of high-level synthesis tools and the <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">hls4ml</monospace> framework and was processed through synthesis and physical layout flows based on a low-power (LP)-CMOS 65-nm technology node. The flow anticipates 200 Mrad of ionizing radiation to select gates and reports a total area of 3.6 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and consumes 95 mW of power. The simulated energy consumption per inference is 2.4 nJ. This is the first radiation-tolerant on-detector ASIC implementation of an NN that has been designed for particle physics applications.Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network autoencoder model can be implemented in a radiation tolerant ASIC to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile. For our application, we consider the high-granularity calorimeter from the CMS experiment at the CERN Large Hadron Collider. The advantage of the machine learning approach is in the flexibility and configurability of the algorithm. By changing the neural network weights, a unique data compression algorithm can be deployed for each sensor in different detector regions, and changing detector or collider conditions. To meet area, performance, and power constraints, we perform a quantization-aware training to create an optimized neural network hardware implementation. The design is achieved through the use of high-level synthesis tools and the hls4ml framework, and was processed through synthesis and physical layout flows based on a LP CMOS 65 nm technology node. The flow anticipates 200 Mrad of ionizing radiation to select gates, and reports a total area of 3.6 mm$^{2}$ and consumes 95 mW of power. The simulated energy consumption per inference is 2.4 nJ. This is the first radiation tolerant on-detector ASIC implementation of a neural network that has been designed for particle physics applications.arXiv:2105.01683FERMILAB-PUB-21-217-CMS-E-SCDoai:cds.cern.ch:27705272021-05-04 |
spellingShingle | hep-ex Particle Physics - Experiment cs.LG Computing and Computers physics.ins-det Detectors and Experimental Techniques Di Guglielmo, Giuseppe Fahim, Farah Herwig, Christian Valentin, Manuel Blanco Duarte, Javier Gingu, Cristian Harris, Philip Hirschauer, James Kwok, Martin Loncar, Vladimir Luo, Yingyi Miranda, Llovizna Ngadiuba, Jennifer Noonan, Daniel Ogrenci-Memik, Seda Pierini, Maurizio Summers, Sioni Tran, Nhan A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC |
title | A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC |
title_full | A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC |
title_fullStr | A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC |
title_full_unstemmed | A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC |
title_short | A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC |
title_sort | reconfigurable neural network asic for detector front-end data compression at the hl-lhc |
topic | hep-ex Particle Physics - Experiment cs.LG Computing and Computers physics.ins-det Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1109/TNS.2021.3087100 http://cds.cern.ch/record/2770527 |
work_keys_str_mv | AT diguglielmogiuseppe areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT fahimfarah areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT herwigchristian areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT valentinmanuelblanco areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT duartejavier areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT gingucristian areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT harrisphilip areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT hirschauerjames areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT kwokmartin areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT loncarvladimir areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT luoyingyi areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT mirandallovizna areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT ngadiubajennifer areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT noonandaniel areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT ogrencimemikseda areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT pierinimaurizio areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT summerssioni areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT trannhan areconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT diguglielmogiuseppe reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT fahimfarah reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT herwigchristian reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT valentinmanuelblanco reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT duartejavier reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT gingucristian reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT harrisphilip reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT hirschauerjames reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT kwokmartin reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT loncarvladimir reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT luoyingyi reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT mirandallovizna reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT ngadiubajennifer reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT noonandaniel reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT ogrencimemikseda reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT pierinimaurizio reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT summerssioni reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc AT trannhan reconfigurableneuralnetworkasicfordetectorfrontenddatacompressionatthehllhc |