Cargando…
A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC
Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network (NN) autoencoder model can be imp...
Autores principales: | Di Guglielmo, Giuseppe, Fahim, Farah, Herwig, Christian, Valentin, Manuel Blanco, Duarte, Javier, Gingu, Cristian, Harris, Philip, Hirschauer, James, Kwok, Martin, Loncar, Vladimir, Luo, Yingyi, Miranda, Llovizna, Ngadiuba, Jennifer, Noonan, Daniel, Ogrenci-Memik, Seda, Pierini, Maurizio, Summers, Sioni, Tran, Nhan |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/TNS.2021.3087100 http://cds.cern.ch/record/2770527 |
Ejemplares similares
-
hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices
por: Fahim, Farah, et al.
Publicado: (2021) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Accelerating Recurrent Neural Networks for Gravitational Wave Experiments
por: Que, Zhiqiang, et al.
Publicado: (2021) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Automated visual inspection of CMS HGCAL silicon sensor surface using an ensemble of a deep convolutional autoencoder and classifier
por: Grönroos, Sonja, et al.
Publicado: (2023)