Cargando…
Extracting low energy signals from raw LArTPC waveforms using deep learning techniques — A proof of concept
We investigate the feasibility of using deep learning techniques, in the form of a one-dimensional convolutional neural network (1D-CNN), for the extraction of signals from the raw waveforms produced by the individual channels of liquid argon time projection chamber (LArTPC) detectors. A minimal gen...
Autores principales: | Uboldi, Lorenzo, Ruth, David, Andrews, Michael, Wang, Michael H.L.S., Wenzel, Hans Joachim, Wu, Wanwei, Yang, Tingjun |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nima.2022.166371 http://cds.cern.ch/record/2773634 |
Ejemplares similares
-
The ProtoDUNE-SP LArTPC Electronics Production, Commissioning, and Performance
por: Adams, D., et al.
Publicado: (2020) -
Study of scintillation light collection, production and propagation in a 4 tonne dual-phase LArTPC
por: Aimard, B., et al.
Publicado: (2020) -
Low-Energy Physics in Neutrino LArTPCs
por: Caratelli, D., et al.
Publicado: (2022) -
Highly-parallelized simulation of a pixelated LArTPC on a GPU
por: Abed Abud, Adam, et al.
Publicado: (2022) -
ARIADNE -- A Novel Optical LArTPC: Technical Design Report and Initial Characterisation using a Secondary Beam from the CERN PS and Cosmic Muons
por: Hollywood, D., et al.
Publicado: (2019)