Cargando…
Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters
Within the Phase-II upgrade of the LHC, the readout electronics of the ATLAS LAr Calorimeters is prepared for high luminosity operation expecting a pile-up of up to 200 simultaneous pp interactions. Moreover, the calorimeter signals of up to 25 subsequent collisions are overlapping, which increases...
Autores principales: | Aad, Georges, Berthold, Anne-Sophie, Calvet, Thomas Philippe, Chiedde, Nemer, Fortin, Etienne, Fritzsche, Nick, Hentges, Rainer Guenter, Laatu, Lauri Antti Olavi, Monnier, Emmanuel, Straessner, Arno, Voigt, Johann Christoph |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s41781-021-00066-y http://cds.cern.ch/record/2775033 |
Ejemplares similares
-
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Aad, Georges, et al.
Publicado: (2022) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Laatu, Lauri Antti Olavi
Publicado: (2023) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Laatu, Lauri Antti Olavi
Publicado: (2021) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Laatu, Lauri Antti Olavi
Publicado: (2021) -
Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters
por: Voigt, Johann Christoph
Publicado: (2021)