Cargando…
Scalable Unsupervised Learning for Deep Discrete Generative Models
Efficient, scalable training of probabilistic generative models is a highly sought after goal in the field of machine learning. One core challenge is that maximum likelihood optimization of generative parameters is computationally intractable for all but a few mostly elementary models. Variational a...
Autor principal: | Guiraud, Enrico |
---|---|
Lenguaje: | eng |
Publicado: |
University of Oldenburg
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2775417 |
Ejemplares similares
-
R Deep learning essentials: build automatic classification and prediction models using unsupervised learning
por: Wiley, Joshua F
Publicado: (2016) -
On Scalable Deep Learning and Parallelizing Gradient Descent
por: Hermans, Joeri
Publicado: (2017) -
Hands-on unsupervised learning with Python: implement machine learning and deep learning models using Scikit-Learn, TensorFlow, and more
por: Bonaccorso, Giuseppe
Publicado: (2019) -
Evolutionary Variational Optimization of Generative Models
por: Drefs, Jakob, et al.
Publicado: (2022) -
Natural computing for unsupervised learning
por: Li, Xiangtao, et al.
Publicado: (2018)