Cargando…
Accelerating Recurrent Neural Networks for Gravitational Wave Experiments
This paper presents novel reconfigurable architectures for reducing the latency of recurrent neural networks (RNNs) that are used for detecting gravitational waves. Gravitational interferometers such as the LIGO detectors capture cosmic events such as black hole mergers which happen at unknown times...
Autores principales: | Que, Zhiqiang, Wang, Erwei, Marikar, Umar, Moreno, Eric, Ngadiuba, Jennifer, Javed, Hamza, Borzyszkowski, Bartłomiej, Aarrestad, Thea, Loncar, Vladimir, Summers, Sioni, Pierini, Maurizio, Cheung, Peter Y., Luk, Wayne |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/ASAP52443.2021.00025 http://cds.cern.ch/record/2775808 |
Ejemplares similares
-
Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
por: Borras, Hendrik, et al.
Publicado: (2022) -
hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices
por: Fahim, Farah, et al.
Publicado: (2021) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
QONNX: Representing Arbitrary-Precision Quantized Neural Networks
por: Pappalardo, Alessandro, et al.
Publicado: (2022)