Cargando…

Gauge group topology of 8D Chaudhuri-Hockney-Lykken vacua

Compactifications of the Chaudhuri-Hockney-Lykken (CHL) string to eight dimensions can be characterized by embeddings of root lattices into the rank 12 momentum lattice <math display="inline"><msub><mi mathvariant="normal">Λ</mi><mi>M</mi></...

Descripción completa

Detalles Bibliográficos
Autores principales: Cvetic, Mirjam, Dierigl, Markus, Lin, Ling, Zhang, Hao Y.
Lenguaje:eng
Publicado: 2021
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.104.086018
http://cds.cern.ch/record/2775811
_version_ 1780971595111596032
author Cvetic, Mirjam
Dierigl, Markus
Lin, Ling
Zhang, Hao Y.
author_facet Cvetic, Mirjam
Dierigl, Markus
Lin, Ling
Zhang, Hao Y.
author_sort Cvetic, Mirjam
collection CERN
description Compactifications of the Chaudhuri-Hockney-Lykken (CHL) string to eight dimensions can be characterized by embeddings of root lattices into the rank 12 momentum lattice <math display="inline"><msub><mi mathvariant="normal">Λ</mi><mi>M</mi></msub></math>, the so-called Mikhailov lattice. Based on these data, we devise a method to determine the global gauge group structure including all <math display="inline"><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></math> factors. The key observation is that, while the physical states correspond to vectors in the momentum lattice, the gauge group topology is encoded in its dual. Interpreting a nontrivial <math display="inline"><msub><mi>π</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo>≡</mo><mi mathvariant="script">Z</mi></math> for the non-Abelian gauge group <math display="inline"><mi>G</mi></math> as having gauged a <math display="inline"><mi mathvariant="script">Z</mi></math> 1-form symmetry, we also prove that all CHL gauge groups are free of a certain anomaly [1] that would obstruct this gauging. We verify this by explicitly computing <math display="inline"><mi mathvariant="script">Z</mi></math> for all 8D CHL vacua with <math display="inline"><mrow><mi>rank</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo>=</mo><mn>10</mn></mrow></math>. Since our method applies also to <math display="inline"><msup><mi>T</mi><mn>2</mn></msup></math> compactifications of heterotic strings, we further establish a map that determines any CHL gauge group topology from that of a “parent” heterotic model.
id cern-2775811
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2021
record_format invenio
spelling cern-27758112023-10-04T06:39:45Zdoi:10.1103/PhysRevD.104.086018http://cds.cern.ch/record/2775811engCvetic, MirjamDierigl, MarkusLin, LingZhang, Hao Y.Gauge group topology of 8D Chaudhuri-Hockney-Lykken vacuahep-thParticle Physics - TheoryCompactifications of the Chaudhuri-Hockney-Lykken (CHL) string to eight dimensions can be characterized by embeddings of root lattices into the rank 12 momentum lattice <math display="inline"><msub><mi mathvariant="normal">Λ</mi><mi>M</mi></msub></math>, the so-called Mikhailov lattice. Based on these data, we devise a method to determine the global gauge group structure including all <math display="inline"><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></math> factors. The key observation is that, while the physical states correspond to vectors in the momentum lattice, the gauge group topology is encoded in its dual. Interpreting a nontrivial <math display="inline"><msub><mi>π</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo>≡</mo><mi mathvariant="script">Z</mi></math> for the non-Abelian gauge group <math display="inline"><mi>G</mi></math> as having gauged a <math display="inline"><mi mathvariant="script">Z</mi></math> 1-form symmetry, we also prove that all CHL gauge groups are free of a certain anomaly [1] that would obstruct this gauging. We verify this by explicitly computing <math display="inline"><mi mathvariant="script">Z</mi></math> for all 8D CHL vacua with <math display="inline"><mrow><mi>rank</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo>=</mo><mn>10</mn></mrow></math>. Since our method applies also to <math display="inline"><msup><mi>T</mi><mn>2</mn></msup></math> compactifications of heterotic strings, we further establish a map that determines any CHL gauge group topology from that of a “parent” heterotic model.Compactifications of the CHL string to eight dimensions can be characterized by embeddings of root lattices into the rank 12 momentum lattice $\Lambda_M$, the so-called Mikhailov lattice. Based on this data, we devise a method to determine the global gauge group structure including all $U(1)$ factors. The key observation is that, while the physical states correspond to vectors in the momentum lattice, the gauge group topology is encoded in its dual. Interpreting a non-trivial $\pi_1(G) \equiv {\cal Z}$ for the non-Abelian gauge group $G$ as having gauged a ${\cal Z}$ 1-form symmetry, we also prove that all CHL gauge groups are free of a certain anomaly (arXiv:2008.10605) that would obstruct this gauging. We verify this by explicitly computing ${\cal Z}$ for all 8d CHL vacua with rank$(G)=10$. Since our method applies also to $T^2$ compactifications of heterotic strings, we further establish a map that determines any CHL gauge group topology from that of a "parent" heterotic model.arXiv:2107.04031CERN-TH-2021-104UPR-1313-TLMU-ASC 19/21oai:cds.cern.ch:27758112021-07-08
spellingShingle hep-th
Particle Physics - Theory
Cvetic, Mirjam
Dierigl, Markus
Lin, Ling
Zhang, Hao Y.
Gauge group topology of 8D Chaudhuri-Hockney-Lykken vacua
title Gauge group topology of 8D Chaudhuri-Hockney-Lykken vacua
title_full Gauge group topology of 8D Chaudhuri-Hockney-Lykken vacua
title_fullStr Gauge group topology of 8D Chaudhuri-Hockney-Lykken vacua
title_full_unstemmed Gauge group topology of 8D Chaudhuri-Hockney-Lykken vacua
title_short Gauge group topology of 8D Chaudhuri-Hockney-Lykken vacua
title_sort gauge group topology of 8d chaudhuri-hockney-lykken vacua
topic hep-th
Particle Physics - Theory
url https://dx.doi.org/10.1103/PhysRevD.104.086018
http://cds.cern.ch/record/2775811
work_keys_str_mv AT cveticmirjam gaugegrouptopologyof8dchaudhurihockneylykkenvacua
AT dieriglmarkus gaugegrouptopologyof8dchaudhurihockneylykkenvacua
AT linling gaugegrouptopologyof8dchaudhurihockneylykkenvacua
AT zhanghaoy gaugegrouptopologyof8dchaudhurihockneylykkenvacua